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ABSTRACT

To realize the full potential of increasingly more accurate measurements, scientists
are now faced with the task of modelling ever smaller effects on their observations to
improve their results. The problem, however, is that there is often little understanding of
the cause and effect relation between these so-called systematic effects and the
measurements. Spectra and autocorrelation functions can be used to help diagnose and
improve the modelling of these systematic effects in measurements. However, standard
techniques for computing spectra and autocorrelation functions require the data to be evenly
spaced, which is often not satisfied in practice.

The approach taken here is to develop a general technique for determining
autocorrelation functions for data which are unevenly spaced. This is an indirect method
whereby the systematic effects, represented by the residuals from an incomplete a priori
deterministic model, are transformed into a power spectrum and then into an autocorrelation
function. To accommodate unevenly spaced data, a general least squares transform and its
inverse are developed. The inverse transform is used to obtain the autocorrelation function
from the least squares spectrum originally developed by ¥afl®71]. This formulation
can accommodate unequally spaced data, random observation errors, arbitrary frequency
selection, arbitrarily weighted and correlated observations, as well as the presence of any a
priori deterministic model. The conventional Fourier transform and spectrum are shown to
be just special cases of this more general least squares formulation. It is also shown how
the individual spectral components in the least squares spectrum and inverse transform can
be estimated either independently of or simultaneously with each other.

The advantages and limitations of the least squares transforms and spectra are
illustrated through tests with simulated data. The technique of using autocorrelation

functions to model systematic effects is also illustrated with two real applications; one



based on the precise measurement of the extension of a baseline spanning the San Andreas
fault in California, and another based on the measurement of ellipsoidal heights using a

GPS receiver under the influence of the effects of Selective Availability. These tests show
that the use of fully populated weight matrices generally results in an increase in the value

of the standard deviations of the estimated model parameters, thereby providing more
realistic estimates of the uncertainties. On the other hand, the effect of correlations among
the observations on the least squares estimates of model parameters was found not to be

very significant.



ACKNOWLEDGMENTS

To Mary, Sarah, Lisa and Samuel.

This work is dedicated to my family, Mary, Sarah, Lisa and Samuel. It simply
would not have been possible without their sacrifice and unfailing support and
understanding for so many years. | owe them a huge debt of gratitude.

| am also deeply indebted to my supervisor, Professor Petfekafoicall his
guidance, advice, generosity and persevering support. His tireless and meticulous efforts
in reviewing my manuscripts and patience in dealing with my stubbornness are gratefully
appreciated. He is truly the quintessential supervisor. | could not have been more
fortunate to have him as my mentor.

| also thank the members of my Examination Committee, especially my Internal
Appraiser, Professor Ferko Csillag (Geography), and my External Examiner, Professor
Douglas E. Smylie (Earth and Atmospheric Science, York University). Their constructive
comments and recommendations, together with those from the other members of my
Examination Committee, are greatly appreciated.

The GPS data used in my tests were kindly provided by William Prescott of the
U.S. Geological Survey in Menlo Park. | especially thank John Langbein, also of the
U.S. Geological Survey in Menlo Park, for supplying the EDM data and for generously
taking the time to discuss some of the results of my analyses.

| express my sincere gratitude to my employer, the Geodetic Survey Division of
Geomatics Canada, and in particular Norman Beck and Lloyd Nabe for giving me time and

support to complete this work.



Portions of this research were also funded by various Natural Sciences and
Engineering Research Council of Canada Operating Grants held by Prof. PétkVanic
during the years 1986 to 1990.

Finally, | thank the Department of Civil Engineering for giving me the opportunity

to finish my dissertation after so many years. | especially thank Professor Robert Gunn for

his help in this regard.



TABLE OF CONTENTS

ADSHIACT ... TR
ACKNOWIEAgMENTS .. ..., iv....
List Of TableS ... oo iX....
LISt Of FIQUIES. . ..o X.....
Chapter 1. IntroducCtion......... ..o 1....
Chapter 2. Basic Concepts of Stochastic Processes........................ 6.
2.1 TYPES Of PrOCESSES ...ttt e et et 6....
2.2  Deterministic and Random ProCesses...........c.vvvviiiiiiiiiiiiinnnnn. 7..
2.3 Stationarity and ErgodiCity.........ccooviiiiiiiiiee Z.....
2.4 Statistical MOMENIS ......ooi e 10..
2.5 Covariance and Correlation FUNCHQNS ..........covviiiiiiiiiiiiiienns 11
2.6  Decomposition of the Observable.................ccooviiiiiii s 15
Chapter 3. The Fourier Transform and Spectrum....................... 17
3.1 Fourier Seriesand IntegralS...........cooiiiiii i 17.
3.2 Fourier TranSform. ... ..t e 21.
3.3 FOUMNEr SPECIIUML ...ttt e 25..
3.4 Convolution and Correlation............cooeviiiiiiii i 33
3.5 FastFourier Transform..........c.c.coooiiii e 36.
3.6 Other TranSfOrmMIS ..ot e 38.

vi



Chapter 4.
4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5.
5.1
5.2
5.3
5.4
5.5
5.6
5.7

Chapter 6.
6.1
6.2
6.3
6.4

Chapter 7.
7.1
7.2

The Least Squares Transform...........cccceeeveiiiiieiiiinnnn, 40
INErOAUCTION. . e 40...
Matrix Form of Fourier Transform...............cooiiiiiiiieneenanninns 41
Least Squares Transform....... ... e 46.
Weighted Least Squares Transfarm...........cccoveeiiiiiiiiiiinnn... 49
Effect of Deterministic Model..............coooviiiiiiiiiiii 53
Vector Space Interpretation ..........ovveeeee e a7.
APPHCALIONS. ... 61..
The Least Squares Spectrum.................cccooiiiiiiiinnnd! 63
INErOAUCTION. . e 63...
Matrix Form of Fourier Spectrum............cooveiiiiiii i 64
Least Squares SpPeCtrUm........ccovieiiiiiiiiiiiiiiieeieieeaes 65.....
Weighted Least Squares Spectrum...........ccccoveviviiinvinennennn. 67......
Effect of Deterministic Model. ... 71
StatistiCal TeSIS. ..o i 74..
Estimation Algorithms..........oooiiiii e 79...
Stochastic Modelling of Observation Errors................ 81
INErOAUCTION. . e e 81...
Direct Autocovariance Function Estimation..............c...ccooeeen.e. 82....
Autocovariance Function Estimation via the Spectrum................. 83
Iteratively Reweighted Least Squares Estimation...................... 84
Numerical TeStS. ... 86..
INErOAUCTION. . e e 86...
Effect of Random Observation Errors............cooevvviiiiiniennnnn. 87

Vii



7.3  Effect of Correlated Random Errors...........cooviiiiiiiiiiiiiieeannnne. 95
7.4  Effect of Random Sampling..........cooviiiiiii i, 103
7.5  Effect of Frequency Selection...........c.ooviiiiii i 110
7.6  Effect of Deterministic Model. ... 117
7.7  Effect of Non-Stationary Random Errors (Random Walk)........... 119
Chapter 8. Some Applications in Geodesy.............ccccvviiiiiiinnnnnnn. 125
8.1  INTrodUCTION. ..o 125..
8.2 EDM Deformation Measurements..........cooeeveiiiniiiinieenncnnen. 126...
8.3  GPS Point POSItIONING. ...t 142
Chapter 9. Conclusions and Recommendations........................... 156
RE I BN CES. i, 159..

viii



Table 8.1
Table 8.2

Table 8.3

Table 8.4

Table 8.5

Table 8.6
Table 8.7

LIST OF TABLES

Least squares estimates of linear trend and datum offsets........... 129
Least squares estimates of linear trend and datum offsets, including
additional datum offset (#5a).........vvvveiiii 134
Least squares estimates of linear trend and datum offsets, including
additional offset (#5a) and using estimated full observation covariance
matrix based on computed ACFE..........ooiiiiiiiiii e 140
Summary of estimated linear trends with and without extra offset and
COTTlatiON S, e e 141...
Unweighted and weighted hourly means and their standard deviations
(Std) of GPS height measurements over a 24 hour period........... 148
Twenty of the largest peaks in least squares spectrum in Figure.8.1652
Weighted hourly means of GPS height measurements and their
standard deviations (Std) over a 24 hour period using correlations

from ACF basedon 24 hoursofdata..........cooovveviiiiiiiiinnnnnn. 153



LIST OF FIGURES

Figure 2.1: A single random process consisting of an ensemble of 4 sample
records (A, B, C, D). 8...
Figure 3.1: Autocorrelation functions (ACF) and power spectral density functions
(SDF) for some special funCtions............c.ovviiiiiiiiii e 27,
Figure 4.1: Commutative diagram for the direct and inverse least squares transform,
whereF denotes the direct transform dad! the inverse transform....60
Figure 6.1: Iteratively reweighted least squares estimation pracess............... 85
Figure 7.1  Periodic time series of 100 equally spaced points and period 10
(frequency 0.1 hz) with no observation errors and with normally
distributed random errors (standard deviations 1/3 and 2/3)....... 89......
Figure 7.2  Least squares spectra of time series of 100 equally spaced points and
period 10 (frequency 0.1) with no observation errors and with normally
distributed random errors (standard deviations 1/3 and 2/3)....... ......
Figure 7.3  Direct estimation of unbiased autocorrelation functions of time series of
100 equally spaced points and period 10 (frequency 0.1) with no
observation errors and with normally distributed random errors (standard
deviations 1/3 and 2/3)......cooiiiii 91.
Figure 7.4  Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and
period 10 (frequency 0.1) with no observation errors...............! 92.....
Figure 7.5 Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and

period 10 (frequency 0.1) with random observation errors (standard



Figure 7.6

Figure 7.7

Figure 7.8

Figure 7.9

Figure 7.10

Figure 7.11

Figure 7.12

eVIAtION 1/3) . .. 93..
Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and
period 10 (frequency 0.1) with random observation errors (standard
eVIALION 2/3) . ... 94..
Periodic time series of 100 equally spaced points with period 10
(frequency 0.1) and correlated random observation errors (standard
eVIAtION 2/3) . ... 97..
Unweighted and weighted LS spectra (both independent and simultaneous
estimation) for periodic time series of 100 equally spaced points with period
10 (frequency 0.1) and correlated random observation errors (standard
eVIAtION 2/3) . ... 98..
Direct and unweighted indirect (via unweighted inverse transform of
unweighted LS spectrum) estimates of biased autocorrelation function

for periodic time series of 100 equally spaced points with period 10
(frequency 0.1) and correlated random observation errors (standard
eVIAtION 2/3) . ... 99..
Weighted indirect estimates of biased autocorrelation function via
weighted inverse LS transform of both independent and simultaneously
estimated LS spectra for periodic time series of 100 equally spaced points
with period 10 (frequency 0.1) and correlated random observation errors
(standard deviation 2/3).........oviiiii e 100
Direct and unweighted indirect (via unweighted inverse transform of
unweighted LS spectrum) estimates of biased autocorrelation function

for time series of 100 equally spaced points with correlated random
observation errors only (standard deviation 2/3)...................... 101

Weighted indirect estimates of biased autocorrelation function via

Xi



Figure 7.13

weighted inverse LS transform of both independent and simultaneously
estimated LS spectra for time series of 100 equally spaced points with
correlated random observation errors only (standard deviation.2/3102
Periodic time series of different lengths of randomly spaced points
(uniformly distributed) with period 10 (frequency 0.1) and no random

(o] o 1Y) A V2= L Lo ] A =1 € £ 0] - TUT T 105...

Figure 7.14a LS spectra (independently estimated frequency components) up to

different maximum frequencies for periodic data series of unequally
spaced points with period 10 (frequency 0.1) and no random

(o] o 1Y) V2= L Lo ] A N =1 € £ 0] S TUT T 106...

Figure 7.14b LS spectra (independently estimated frequency components) for

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

different lengths of periodic data series of unequally spaced points

with period 10 (frequency 0.1) and no random observation errars 107
Indirect estimates (via unweighted inverse LS transform of unweighted
LS spectrum) of biased autocorrelation functions for different lengths of
periodic data series of unequally spaced points with period 10
(frequency 0.1) and no random observation errors.................. 108
Direct estimates (via interval averaging) of biased autocorrelation
functions for different lengths of periodic data series of unequally
spaced points with period 10 (frequency 0.1) and no random
ObSEervation  ErITOrS. i 1009...
LS spectra for different sets of simultaneously estimated frequencies
for periodic data series of 100 unequally spaced points with period 10
(frequency 0.1) and no random observation errors.................. 113
Indirectly estimated LS autocorrelation functions via the LS spectrum
using different sets of simultaneously estimated frequencies for

periodic data series of 100 unequally spaced points with period 10

Xii



Figure 7.19

Figure 7.20

Figure 7.21

Figure 7.22

Figure 7.23

Figure 7.24

Figure 7.25

Figure 8.1

Figure 8.2

(frequency 0.1) and no random observation errors.................. 114
Periodic time series of randomly spaced points with frequencies 0.1
and 0.25 hz and no random observation errors (top), and independent
estimation of the LS spectrum (bottam) ..., 115
Indirectly estimated ACF via the inverse LS transform of the
independent LS spectrum using all frequencies (top) and of the
simultaneous LS spectrum using only the two significant spectral
peaks at 0.1 and 0.25 hz (bottam)...........ccoeviiiiiiiiiiiiiiens. 116
Quadratic trend time series with periodic component (frequency

0.01 hz) and no random errors (top); LS spectrum of residuals from
guadratic trend model (middle); LS spectrum accounting for effects

of quadratic model (bottom)...........ooviiii 118
Evenly sampled 100 point random walk time series (standard
deviation 1) (top) and its corresponding LS spectrum.............. 121...
Direct (top) and indirect (bottom) autocorrelation functions for 100

point random walk data Series............c.vviiriiiiii i 122
Unevenly sampled 100 point random walk time series (top) and its
corresponding LS SPeCtrumL........ovviiiii e 123
Indirect estimate of autocorrelation via the independently estimated

LS spectrum for the unevenly sampled 100 point random walk time

S]] 11 124..
Location of the Pearblossom network in California used to

measure crustal deformation with a two-colour EDM instrument

and location of the Holcomb-Lepage baseline spanning the San
Andreas fault running through this network [after Langbein and
Johnson, 1997, Figure 1].....ccociiiiiiiiiiiiiiii e 128...

Changes in length of Holcomb-Lepage baseline. Different

Xiil



observation groups are denoted by different symbol colour/type
COMDBINALIONS . ... e 128.
Figure 8.3  Comparison of residual baseline length changes after removal of
estimated distance offsets for each observation group and a common
linear trend. Different observation groups are denoted by different
symbol colour/type combinations..............c.ooviiiiiiiiiiiieeen 130
Figure 8.4  Histograms of lengths of point triplets (“Nyquist periods”)
corresponding to possible Nyquist frequencies. Bottom plot gives
a more detailed histogramatlday.............ccoevviiiiiiiiiniinnn.. 131
Figure 8.5 Weighted least squares spectra (independently estimated) of
baseline length residuals from the deterministic model in Table.8.1132
Figure 8.6  Changes in length of Holcomb to Lepage baseline with additional
datum offset in observation group from 1984 to mid-1992........ 133...
Figure 8.7 Comparison of residual baseline length changes after removal of
estimated datum offsets, including additional offset, for each
observation group and a common linear trend for all groups........ 134
Figure 8.8  Weighted least squares spectra of baseline length residuals from
the deterministic model with additional distance offset............... 135
Figure 8.9  Semi-log (top) and log (bottom) plots of weighted least squares
spectra of baseline length residuals from the deterministic model
with additional datum offSet.............ccooviiiiii i 137
Figure 8.10 Indirect ACF, and enlargement at short lags, estimated from
zero-padded time series of Holcomb-Lepage length changes with
additional datum offSet. ... 139
Figure 8.11 Variations in derived horizontal (top) and vertical (bottom) GPS
positions over 24 hours at station Chabot............................ 144....

Figure 8.12 Variations in recorded horizontal (top) and vertical (bottom) GPS

Xiv



Figure 8.13

Figure 8.14

Figure 8.15

Figure 8.16

Figure 8.17
Figure 8.18

positions for the first hour at station Chabot......................... 145...
Independently estimated least squares spectrum of GPS height
measurements for the first hour (data zero-padded)................. 147
Indirect estimate of the biased autocorrelation function via the

inverse least squares transform of the least squares spectrum for

the firSt NOUL. ... e 147.
Unweighted (top) and weighted (bottom) hourly means of GPS

height measurements over a 24 hour periad.................coeeeens 149
Least squares spectrum (independently estimated) for entire 24

NOUr data Set...... ... e 151.
Autocorrelation function for entire 24 hour data.set................... 152
Weighted (top) hourly means of GPS height measurements over

a 24 hour period using correlations obtained from ACF based on

24 hours of data, and difference with equally weighted means without

correlations (DOOM). ......ooe e 154

XV



Chapter 1
| ntroduction

Recent advances in technology have produced extremely precise and accurate
measuring systems that are affected by even the smallest effects that were once much too
small to be noticed. In the past these effects were considered to be random noise to be
averaged out. To realize the full potential of their measurements, scientists are now faced
with the task of modelling these small effects in order to improve their predictions. The
problem, however, is that there is often little understanding of the cause and effect relation
between these so-called systematic effects and the measured observables.

There are basically two approaches to describing or modelling the measured
observations. Deterministic models are used to explicitly describe the behaviour of the
observations in terms of a mathematical model of the physical process. These deterministic
models consist of constants and parameters to be estimated. Often, however, there is little
understanding of the physical processes underlying the behaviour of the measurements. In
the other approach, stochastic models treat the measurements, or what remains after
removing a deterministic part, as unpredictable random (i.e., stochastic) quantities.
Stochastic models describe the dependencies between the data and the incomplete
deterministic model in terms of mathematical correlations. These correlations can be
represented by filters, polynomials, correlation functions and spectral density functions.
Because deterministic modelling is usually the preferred approach, correlations are often
used to help diagnose and improve the deterministic model. In cases where this is not
possible, the correlations, if carefully constructed, can be used to help describe the residual

systematic effects within the deterministic model.



The least squares estimation technique is primarily used for fitting deterministic
models to the measurements. However, it is also able to accommodate stochastic models
through the use of a fully populated covariance matrix for the observations. There are
different methods of determining the variances and covariances that form the observation
covariance matrix. The most direct method involves determining an autocovariance
function that describes the behaviour of various systematic effects. The problem with this,
and the main motivation for this work, is that traditional techniques for computing
autocorrelation functions require the data to be evenly spaced. This may not be the case,
especially when looking for correlations with some (physically meaningful) parameters
given as numerical functions. In practice such functions are often known only for values
of the argument that are unevenly spaced.

The usual way of handling unevenly spaced data is to interpolate or approximate the
original series to get an evenly spaced one. Because this approach tends to model the lower
frequency content in the data, the low frequency behaviour of the measurements must be
known. Moreover, the high frequency components can be lost by the smoothing effect of
the interpolation or approximation.

The approach taken here is to develop a more general technique for determining
autocorrelation functions for data which are unevenly spaced with respect to quantities
describing the systematic effects. As will be seen later, there are two basic approaches to
estimating autocorrelation functions. The most direct is to compute the autocorrelation
function directly from the data. In this case, however, there is no satisfactory method of
handling unevenly spaced points. There are methods based on averaging over larger,
evenly spaced intervals or bins, but using these results in a loss of resolution.

The alternative approach is to estimate the autocorrelation function indirectly by first
representing the systematic effects in terms of a power spectrum and then transforming this
into an autocorrelation function. This is the approach taken here. Again the problem is that

most techniques for computing the power spectrum require evenly spaced data as do those



for transforming the power spectrum to the autocorrelation function. The aim here is to
find a more general technique that does not require evenly spaced data. To this end, a
general least squares transform is developed.

Other methods are also available for determining the variances and covariances of
the observations. The most popular of these are the methods of analysis of variance and
variance-covariance component estimation. The “analysis of variance” (ANOVA) method
(also called factor analysis in statistics) can be found in most standard texts on statistics.
Geodetic applications of the technique are described in detail by Kelly [1991] and in a
series of articles by Wassef [1959; 1974; 1976]. Essentially the aim of the method is to
divide the measurements into separate groups (factors which contribute to the overall
variation in the data) and to estimate the variance components for each. The difficulty in
applying the method is defining a scheme of dividing the observations into separate groups
which characterize some behaviour of the systematic effect being modelled. Often, the
factors describing the systematic effect cannot be so discretely defined, rather they are often
of a continuous nature that precludes lumping them together into separate and distinct
groups.

Variance-covariance component estimation, on the other hand, is based on
modelling deterministically the residual variation in the measurements. The variances and
covariances are expressed in terms of linear models relating these components to various
factors describing the systematic effect. The coefficients (variance and covariance
components) in the variance-covariance model are estimated together with the parameters in
a least squares solution. The technique is described in detail in Rao and Kleffe [1988] and
has been applied to many geodetic problems (see, e.g., Grafarend et al. [1980], Grafarend
[1984], Chen et al. [1990]). It can be shown that the analysis of variance method is just a
special case of this more general approach [Chrzanowski et al., 1994] The problem with
applying the method is that the estimation of the variance-covariance model coefficients

usually needs to be iterated which can result in biased estimates of the variances and



covariances [Rao and Kleffe, 1988]. This can lead to negative variances, which is
unacceptable.

The approach taken here is to model any residual systematic effects remaining after
removing a deterministic model, using autocorrelation functions derived from a power
spectral density function of the residuals. This idea was first proposed bgkanit
Craymer [1983a; 1983b] and further developed by Craymer [1984]. To accommodate
unevenly spaced data, the least squares spectrum, developed ek \Va96da], was used
and converted to an autocorrelation function using the inverse Fourier transform.

However, the inverse Fourier transform is not completely compatible with the more general
least squares spectrum. Consequently, a more general least squares transform and its
inverse are developed here which are completely compatible with the least squares spectrum
and can provide correct autocorrelation functions for data that are unevenly spaced.
Although applied only to geodetic problems here, this technique should have wide
application in many areas of science where one needs to model or analyze measured data.

Before describing the technique, a review of the basic concepts of stochastic
processes and the conventional Fourier transform and spectrum are given. This is followed
by the development of a new “least squares” transform and its inverse, and the
reformulation of the least squares spectrum, originally developed byekdaf69a;

1971], in terms of this new transform. It is then shown how an autocorrelation function
can be derived from the least squares spectrum using the inverse least squares transform,
and how this can be used in a procedure for stochastically modelling residual systematic
effects. These developments are followed by tests with simulated data to examine
numerically some of the limitations of the technique. It is also applied to a couple of
examples in geodesy; the modelling of residual systematic effects in electronic distance
measurement (EDM) data and point positioning data from the Global Positioning System

(GPS). Finally, conclusions and recommendations for further investigations are given.



Throughout the sequel the following notation is used:

variables/observables italic

vectors lower case, boldface letters
matrices/operators upper case, boldface letters
functions upper or lower case letters, no boldface



Chapter 2
Basic Concepts of Stochastic Processes

2.1 Types of Processes

A process can be considered to be any kind of physical phenomenon that varies in
some way. We examine such processes by taking measurements of them; i.e., by
describing their physical behaviour in terms of numerical quantities that can then be
analysed mathematically. These processes are most commonly represented as series of
measurements (observations), often taken with respect to time (time series) or space (spatial
processes). When regarded more generally as series with respect to any other argument,
these processes are referred to here as simply data series.

Processeg(t) are usually thought of as one-dimensional; that is, varying with
respect to a one dimensional argumemgifch as time. However, a process may also be
multidimensional; i.e., a functiog(t) of a vector of argument$) (— e.g., processagt)
which are functions of three-dimensional positighil space or four-dimensional position
in space-time. One may also encounter multiple procegg&3esd multiple arguments),

Processes can be classified as either continuous or discrete. Examples of
continuous processes are the crustal motions of land masses due to tectonic deformations or
the motions of satellites in orbit about the Earth. On the other hand, the accumulated errors
from point to point in a geodetic network would be classified as a discrete process (in
space). Generally, one is only able to obtain discrete samples of continuous processes,

primarily due to the nature of data acquisition systems.



2.2 Deterministic and Random Processes

Processes can also be classified as deterministic and random. What is random?
“Everything and nothing” according to Kac [1983, pp. 405-406]. There is no one test for
determining whether a process is either random or deterministic. The definitions most
often used are only subjective or heuristic and a matter of philosophical debate. One person
may consider a process to be random noise to be filtered out while another may consider
the same random process to be a deterministic signal to be modelled.

The most straightforward definition is that deterministic implies predictability while
random implies unpredictability. Thus what is considered deterministic and what is
considered random depends on what one wishes to model . The deterministic part is what
is being predicted or estimated exactly while the random or stochastic part is that which one
can only predict or estimate with some degree of uncertainty. In the last century,
instruments had rather limited precision and much of the variability in a process was
considered to be random or stochastic, so that one could only predict with a great deal of
uncertainty. More recently, however, new measuring techniques have become more
precise so that it is now possible to attempt to model ever smaller variations in the data in an

effort to improve the prediction power of the deterministic model.

2.3 Stationarity and Egodicity

Different realizations of a random process will, in general, not be identical. A
single realization of a process is called a sample record. The collection or ensemble of all
sample records is called a random or stochastic process (see Figure 2.1). In a random
process, all sample records are different while in a deterministic process all samples are

identical.
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Figure2.1: A single random process consisting of an ensemble of 4 sample records (A,
B, C, D). There are 100 values of the argument ranging from 1 to 100. Ensemble or
sample averages are taken over the four different sample records for each valuar (e.qg.,
t+17) of the argument; i.e., there are 100 sample averages. Argument averages are taken

over the arguments for each sample record; i.e., there are 4 argument averages.



Random or stochastic processes can be classified as being either stationary or non-
stationary. A process is stationary if the statistical properties of the process, defined over
the ensemble, are independent of the argument(s) (usually time or space). That is, the
statistical moments over all realizations (e.g., ensemble or sample averages) are the same
for all values of the argument. A non-stationary process is one for which this property is
not satisfied. Such processes require special techniques to model their behaviour (see,
e.g., Bendat and Piersol [1971] and Priestley [1981]).

In practice, different degrees of stationarity exist. If the complete statistical
description of the process (i.e., all possible statistical moments) is independent of the
argument, the process is said to be completely stationary. If only the first few moments are
independent of the argument, the process is considered to be weakly stationary. Processes
with a Gaussian probability distribution are completely described by only the first two
moments. In this case, stationarity in only the first two moments infers complete
stationarity.

Stationarity can be further classified on the basis of ergodicity. A process is
ergodic if the statistical properties taken over the argument (e.g., time averages) are
identical to the statistical properties taken over different realizations (e.g., ensemble or
sample averages). The assumption of ergodicity allows for a considerable reduction in the
number of observations and computations required to determine the statistical properties of
a random process. For the sake of simplicity, convenience and, most importantly, costs,
most random processes are assumed to be ergodic in practice, even though there may be
evidence to the contrary.

When dealing with multidimensional (i.e., multi-argument) spatial procegses
whose argumentx) define location and orientation in space, stationarity is often
considered in terms of homogeneity and isotropy. A process is homogeneous if it is
invariant with respect to its location in space and isotropic if it is invariant with respect to its

orientation [Grafarend, 1976].



Throughout this work all processes are assumed to be stationary and ergodic. Any
nonstationarity and nonergodicity is assumed to be explicitly modelled deterministically and

is assumed to disappear when the model is selected properly.
2.4 Statistical Moments

The properties of a random processes can be described by the statistical moments of
their probability density functions. For a single continuous random process (or variable)
1), at a particular argumenfhereafter called time for convenience), the kth-order moment

is given by
E[a)] = [a)kP@n) dp, Dt (—,), (2.1)

where E[] is the mathematical expectation operatoP{g)) is the probability density
function of the random variablgat timet. The integration is performed over all sample
records at timé. This implies thatg(t)k O (—0,00) must be integrable.

Generally, only the first two moments are useful in practice. The first moment or
mean value is the simplest and most common measure of a random process. It provides a
measure of the central tendency in the data series. For random processes with discrete

sample recordg(t) , i=1,...n, the meanu(t) at argument is defined by
im 1 <
KO = Ho)] = nDemy @), 0t0 (—ox), (2.2)
1I=1

wheren is the total number of sample records (infinite in the limit).
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The second-order moment is a measure of the variation in the random process and

is defined by
. n
E[e0] = nTe'y Y aM2, 00 (o) (2.3)
=1

The second-order central moment is a measure of the variation about the mean and is also

called the variance(t)2. The discrete form of the variance can be written as
l. 1 n
ot = H(a)-10)?2] = nte Y (a0-u®)2, 0t0 (-eowm). (2.4)
=1

2.5 Covariance and Correlation Functions

Covariance and correlation functions are generic terms for the more general second-
order moments which provide a measure of the linear dependence between observations at
different values of the argumemntAutocovariance and autocorrelation functions represent
the linear dependence within a single random process. Cross-covariance and cross-
correlation functions represent the linear dependence between a pair of different random
processes.

The autocovariance functid(t,t') is defined by

. n
ctt) = H(@-u0)(@)-40)] = " 2 Y (a0-1O)(A)-wuw)) |
=1

Ott' O (—oo,00). (2.5)
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When the times are the same (itet}), egn. (2.5) reduces to the variamg®2. The
cross-covariance functiddy, between two random procesgg and(t) is defined

similarly as

Contt) = B[ (1) (U»-1141))] = 1" rili((n(t)—ﬂqo(t))(yl(t')—ﬂy(t')),

Ott 0 (—0,00). (2.6)

The autocorrelation functidr(t,t") is defined as the normalized autocovariance

function: i.e.,

R(LE) = - C(t,t) - C(t,t) ’
VCEY) CT.t) o) aot)

Ott' 0 (—oo,00). (2.7)

Similarly, the cross-correlation functi®y/t,t) is the normalized autocorrelation

function:

N = Co/t,) = CofLt) 'O (o0 00
Raft.t) VCLH CoAtt)  pft) apft) HtrH (o). (28)

The autocorrelation function is limited to the range

“1 <R(Lt) £ 1, Ot 0 (~oo0,0) (2.9)

for all t andt'. When the timesandt' are the same, the autocorrelation function is equal to

one. The same holds for the cross-correlation function.
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If the random process is stationary, the moments are independent of the value of the
argument. Thus, in the above definitions, the expressions are dependent only on the time

difference or lagr=t—t. The moments then reduce to the follow forms:

pu=Han], 0t0 (~o,m), (2.10)
cm = H(av+) (at+-4)] . OtO (~o0), (2.11)
R(D) = g((é)) . 0t0 (—o0,m). (2.12)

Similar expressions to eqns. (2.11) and (2.12) can be written for the cross-covariance and
cross-correlation functions.
The following two properties of these functions are consequences of the

assumption of stationarity:

1. The auto/cross-covariance and auto/cross-correlation functions are even functions
of 7; i.e.,
C(r) = C(-1), (2.13)
R(@) = R(-7) . (2.14)
2. At lag =0 the autocovariance function is positive and the autocorrelation function is

equal to one; i.e.,

C(0) > 0, (2.15)
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R(0) = 1. (2.16)

Ergodicity is probably the most important and often used assumption in practical
data analysis applications, even when the process is known to be non-ergodic or even non-
stationary. This is done to simplify the data acquisition and handling procedures.
Stochastic processes are ergodic if their sample moments (e.g., mean, autocovariance, etc.)
can be determined from averaging over the argument (e.g., time) instead of averaging over

the sample records (see Figure 2.1). For the mean and autocovariance function,

H=Ha] = [ot) P(e) dt , (2.17)

c@ = H(a0-+) (at+d4) | = [(av-w) (atrn-) P(e) dt . (2.18)

The discrete forms of these expressions (for discrete random processes) are given by:

n
9= ﬁzlqo(ti) , (2.19)
1 n—k
C(y) = H;(ﬂti)—ﬂ)((ﬂti'”k)—ll) , (2.20)

where lagrg = k AandAtis the sampling interval. This expression gives an unbiased
estimate of the autocovariance function. Although unbiasedness is desirable, this function
is not positive definite. Constructing covariance matrices from this leads to singular
matrices. It also exhibits so-called “wild” behaviour at large lags. For these reasons, the

biased estimate is recommended by Bendat and Piersol [1971, pp. 312-314] and Priestley
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[1981, pp. 323-324], where the denominatekin eqn. (2.20) is replaced by the constant
n. This results in a function that tapers off as the lag increases. An example of this is
given in the numerical simulations in Chapter 7.

Similar expressions can also be written for the cross-covariance functions. Note
that the integrations and summations are performed over the arguatéet than over the
sample records; i.e., under the assumption of ergodicity the moments can be computed

from a single sample.

2.6 Decomposition of the Observable

In the real world, processes cannot be modelled as purely deterministic or
stochastic. Instead, one is faced with a mixture of both. Clearly, there are many factors
which prevent us to model in a deterministic way. Most are due to either measurement
errors or systems that are simply too complex to be modelled entirely deterministically.
According to Priestley [1981, p. 14] “almost all quantitative phenomena occurring in
science should be treated as random processes as opposed to deterministic functions.”

The expected value of a random process may be computed from some deterministic
model describing the expected behaviour of the series. However, this model will probably
not describe the series exactly as mentioned above. A stochastic model may then be used to
account for the resulting lack of fit. It is therefore convenient to decompose the observable
@t) into a deterministic or trend compon@ft) and a random or stochastic comporegtjt

i.e.,

dt) = ¢t) +et), OtO (—oo,0). (2.21)

The random componea(t) may also be decomposed into two components:

15



e(t) = s(t)+&t), OtO (—oo,00). (2.22)

wheres(t) is a statistically dependent (correlated) component@his a statistically
independent (uncorrelated) component. The observable may then be represented in the

form

wt) = @+st)y+et), OtO (—oo,0). (2.23)

The statistically dependent component is often due to effects neglected or incompletely
accounted for in the deterministic model definedabyoth random components are

assumed to have a zero mean. This is enforced when the trend component is estimated by
least squares. However, due to the statistical dependence, there is a correlation among the
s(t) components. This statistically dependent component can be thought of as the residual
deterministic part remaining after removing the postulated deterministic model. Thus, this

component is often referred to as a systematic error or systematic effect.
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Chapter 3
The Fourier Transform and Spectrum

3.1 Fourier Series and Integrals

It is well known in mathematics that any continuous, periodic function can be
represented by an infinite series of trigonometric functions, called a Fourier seuygs. If

is a function of period, it can then be expressed in the form

@t) = %a0+ Z (aj cos2mt + bj sin2mt ), (3.1)
i=0

whereg; andb; are the Fourier coefficients corresponding to frequénclhe frequencyj
can also be expressed in terms of the natural or fundamental fredgasfyif o, where
fo=1/T. Note that if angular frequencies)(are to be usedy (in radians per unit dj
should be substituted f@ut;.
Using the fact that the cosine and sine functions form an orthogonal basis over the

interval (4/2, T/2), the Fourier coefficients for all= 0,...,00 are given by [Priestley,

1981, p. 194]
5 T/2
a =< |[q@t) co2mt dt, (3.2)
T
5 T/2
bi = T_ngqo(t) sin2mt dt . (3.3)

17



If @(t) is an even function, i.egt) = g—t), theb; coefficients are zero. Whaeg(t) is an

odd function, i.e.g¢t) = —¢@—t), thea coefficients are zero. Note that writing the constant
term in egn. (3.1) a@o rather than aag makes the expressions (egns. (3.2) and (3.3)) for
the coefficients valid even for0.

For non-periodic functions, there is no such Fourier series representation.
However, according to Priestley [1981, pp.198-200], a new periodic function may be
defined which is the same as the non-periodic one over a finite intervak-B5&yT(2)
but repeats itself and is thus periodic outside this interval. This new function will have a
periodT and can now be represented as a Fourier series. By [Etting the discrete set
of frequencies in the Fourier series becomes a continuous set of frequencies; i.e., an
integral. The non-periodic function can then be represented by the so-called Fourier

integral which has the form [Priestley, 1981, pp. 198-199]

00

ot) = I(a(f) cos2mift+ b(f) sin2nfyydf, Ot (3.4)

—50

where the Fourier coefficients over the continuous range of frequencies are defined by

a(h) = % [o cos2nftdt, Of, (3.5)
b(f) = = [@t) sin2mftdr, Of. (3.6)

This representation of a non-periodic function in terms of a continuous set of frequencies
holds only when the function is absolutely integrable over the infinite interval (—, o)

[Priestley, 1981, p. 200]; i.e.,
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I|cp(t)|dt <o, Ot. (3.7)

This happens wheg(t) decays to zero agjoes to infinity.

So far only periodic and non-periodic deterministic functions have been considered.
However, in practice one usually deals with random or stochastic functions (processes)
where the application of the above representations is not so apparent. Clearly, stochastic
functions may not necessarily be periodic and thus they cannot be represented by Fourier
series. Furthermore, stochastic functions are not absolutely integrable since, by the
definition of stationarity, they do not decay to zero at infinity. It would then appear that we
cannot represent them as Fourier integrals either. Nevertheless, according to Priestley
[1981, p. 207] it is possible to circumvent this problem by simply truncating the stochastic
process at, say;T/2andT/2 as done for non-periodic functions. Outside this interval the
function is defined to be zero, thereby satisfying the absolutely integrable condition. As
long as the stochastic function is continuous, it can be represented by the Fourier integral as
in eqgn. (3.4) but with coefficients defined by finite Fourier integrals using integration limits

(T/2=T/2) instead of (—o0,); i.e.[Priestley, 1981, p. 207],

T/2

a(h) = 2 1_[zqo(t) cos2mftdt, Of, (3.8)
T/2

b(f) = % 1I/Zgo(t) sin2mftdt, Of. (3.9)

Unfortunately, we cannot take the liriit- 0 as before since, by the property of

stationarity, the above integrals would not be finite.
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Although all of the expressions for the Fourier series and integrals were given in
terms of trigonometric functions, it is more common to use complex notation for a more
compact representation of the series and integrals. Assigning the cosine term to the real
component and the sine term to the imaginary component, each trigonometric term can be
replaced by a complex exponential function using Euler's formula [Bronshtein and

Semendyayev, 1985, p. 474]

cos2mft j sin 2mtft = &2mft (3.10)

wherej=v-1 is the imaginary unit.

Using this notation, the Fourier series in eqn. (3.1) can be re-written as [Priestley,

1981, p. 199]
@) = > Agel2mkt (3.11)
Koo
where
1 .
ak-ibk; ), k>1
Ac=[] S0, k=0 (3.12)
O Yacibi) . ks -1

Substituting forax andby, using eqgns. (3.2), (3.3) and (3.10),

T/2
Ac =X [ot) ei2mit dt (3.13)
T -T/2
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Putting this in the Fourier series in the continuous form of egn. (3.11) and Tetting

gives the so-called Fourier integral over a continuous range of observations; i.e.,

(e]

@t) = IF(f) el2mftgf | (3.1614

where

00

E J’go(t) e-21fidt  for non-periodic functions
Fh =[] 55, . (3.15)
E TIqo(t) e-i2nfigt for stochastic functions
112

3.2 Fourier Transform

Given the Fourier integral representation of a non-periodic or stochastic function,
the transformation frong(t) to F(f) in egn. (3.15) is called the (direct) Fourier transform,
or the finite Fourier transform if dealing with stochastic functions. The transformation
from F(f) to ¢(t) in eqgn. (3.14) is called the inverse Fourier transfog). andF(f) are
referred to as a Fourier transform pair, denoteg(tyy= F(f). Note that the complex
conjugate form is used in the direct transform and not in the inverse transform. In some
texts (e.g., Press et al. [1986]), the conjugate form is used in the inverse transform and not
in the direct transform.

In practice one rarely deals with continuous stochastic processes of infinite length
but rather with actual discrete processes or discretely sampled data from continuous
processes of finite length. Although such discrete samples are often evenly spaced in time

(or any other argument), this may not always be the case. Nevertheless, the application of
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traditional Fourier transform techniques requires the processes to be discretely and evenly
sampled. This is because the trigonometric functions are not orthogonal over an unevenly
spaced domain.

For a discretely and evenly sampled stochastic process or data géjes {
i=0,1,...n—1}, the discrete Fourier transform is obtained by approximating the Fourier

integral in egn. (3.15) with a summation; i.e.,

© n-1
F(fy = j @(t) e i2mt dt O At Z)go(ti) ei2mgt (3.16)
—00 1=

wheren is the number of “observations” (sampledjs the sampling interval arigdis one

of the frequencies belonging to the set of frequencies estimable from the discrete process
(see below). Note also that the summation index extends from-Q {@nstead of 1 ta)
following the usual convention. T=nAtis the length of the data series, the discrete set of

frequencies are given by

e =T£=L=kfo, (k=] ...

AT , (3.17)

NS

wherefo=1/T=1/(nAt is the fundamental frequency. To make matters simplsr,
assumed to be even (the data series is truncated to an even number of points). This set of
integer multiples of the fundamental frequency will be simply called “Fourier” frequencies
here because they are always used in the Fourier transform and Fourier spectrum.

By convention, it is only the final summation in egn. (3.16) (withoutMime
front) that is commonly referred to as the discrete Fourier transform, dendteddoy

frequencyfx. The discrete Fourier transform (DFT) is then defined by
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n—1
Fk = an(ti) el |, Ok. (3.18)
1=0

The inverse discrete Fourier transform is obtained similarly by approximating the integral in
eqgn. (3.14) with a summation and substituting for the discrete Fourier transform. This

gives

1
at) = ﬁiFk d2mt O (3.19)
k=

The discrete sampling of a stochastic process has an important consequence known
as the aliasing effect, whereby some high frequency information will be lost or, more
precisely, hidden (aliased) in the lower frequencies. This can be seen by examining the
exponential term in egns. (3.17) and (3.18) as a function of the discretely sampled process
@tj), 1 = —oo,...,00, Whetyre i AtandAtis the sampling interval. Re-writing the

exponential function as
g2t = cos2mft+j sin2mft , (3.20)

the effect of discrete sampling on each sine and cosine term can be seen. For example,

substitutingAtfor tj in the cosine term gives

cos2rft = cos2mifAt (3.21)

The same can be written for a new frequency f+Af;

COS2TAft = cosRruifif 2TtiAJAL (3.22)
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These two cosine terms are equivalent onBruiAfistan integer multiple aft This
occurs wher\tis an integer multiple dfy = ﬁ called the Nyquist or critical frequency.
Thus the cosine terms will look the same for frequerfc?fkf, fi%, ... All appear to
have frequency. The same holds for the sine terms. All frequencies outside of the
Nyquist frequency range-fy,fn) will be aliased to (i.e., moved to and superimposed on)
frequencies in this range. If possibtesibuld be chosen small enough to avoid aliasing.
However, this requires a knowledge of the upper frequency limit of the information
contained in the process being sampled or, at least, knowledge that only negligible
information exists beyond the Nyquist frequency and our willingness to neglect this
information.

There are some special properties of Fourier transforms that are of particular

importance. These are summarized as follows (* indicates the complex conjugate

operator):

¢t) is real F(-f) = F(f)* , (3.23)
¢t) is imaginary F(-f) = —=F(H)* , (3.24)
1) is even F(-f) = F(f) (i.e.,F(f) is even) , (3.25)
¢(t) is odd F(-f) ==F(f) (i.e.,F(f) is odd) . (3.26)

Note that when dealing with real functions, the series of trigonometric terms of cosines and
sines reduce to a series of only cosine terms; i.e., by egn. (3.19) the sine terms are all zero.
In this case the Fourier transform reduces to the so-called cosine transform.

The following are some other properties of the Fourier transform (from Press et al.
[1992, p. 491]). Recall tha(t) = F(f) indicates thatgt) andF(f) are a Fourier transform

pair.
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Time shifting dt-t)) = F(f) g21 (3.27)

Time scaling fat) - |<’i1L| F%E, (3.28)
Frequency shifting ¢t) ed2¥t -  F(f—fo) , (3.29)
Frequency scaling Ilbl%g = F(bf). (3.30)

3.3 Fourier Spectrum

The representation of functions in terms of Fourier series has a special physical
interpretation in terms of power (cf. Priestley [1981, p. 194-195] and Press et al. [1992, p.
492]). Consider an absolutely integrable non-periodic function f(t). The total “power” of

@) is customarily defined by

o0

Total power = Iqo(t)2 dt . (3.31)

Substituting the inverse Fourier transform in eqn. (3.14) for one g{thegives

© [ 0 . 0
2dt = O [ E(f) é2mftdfOdt . 3.32
4'[(”“) t JDco(t) m[, () . t (3.32)

Interchanging the order of the integrals and substituting for the direct Fourier transforms

results in

D

F(f) DLQD(t) ei2mftgt S df
:

I¢(t)2 dt =

:
1
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00

[ F(f) F*(f) df (3.33)

[IF(MP df,

whereF*(f) denotes the complex conjugateFgf). The total power can therefore be
expressed either in terms of the integral of the original function or its Fourier transform;

i.e.,

Total power = I(p(t)z dt = I|F(f)|2 df . (3.34)

This is known as Parseval's relation [Jenkins and Watts, 1969, p. 25; Priestley, 1981, p.
201] or Parseval's theorem [Press et al., 1992, p. 492]. Note that the total power is equal
to n times the variance?.

It can be seen from eqn. (3.34) that the total power is divided among a continuous
set of frequencies in the representative Fourier integral. EacHR@#uf represents the
contribution to the total power ig(t) produced by the components with frequencies in the

interval(f, f+df). The so-called power spectral densiff) for frequencyf is thus defined

by

s(f) = FMI2. (3.35)
The plot ofs(f) versus frequenclyis also called the power spectrum, or simply the

spectrum. Theoretical power spectral density functions for some special functions are

illustrated in Figure 3.1.
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Figure 3.1: Autocorrelation functions (ACF) and power spectral density functions (SDF)

for some special functions.
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For periodic functions, the total power over the entire interval (—, ) is infinite
[Priestley, 1981, pp. 195,205]. Although it is only needed to describe the power over the
finite interval(—=T/2, T/2)in order to characterize it for the entire infinite interval, it is
usually more convenient to use the total power per unit of time over the finite interval. This

is obtained by dividing the total power by the peflode.,

T T
o Total power%z 5 E
T T .
Total power per unit of tlmg—é 20" T
1 T/2
=T T[z(p(t)2 dt (3.36)

1 (o]
7 Y F(fP
e

5 s(id)

k=00

The total power over{I/2,T/3 is divided among the infinite set of discrete frequencies in
the representative Fourier series. The contribwfihto the total power per unit of time
of each “Fourier” frequencﬁk:.l.L is called the spectral value for frequemficgnd is

defined by

s(i) = = IF(RR. (3.37)

Similarly, for stationary stochastic functions (random processes), the total power is
also infinite by the definition of stationarity (i.e., a steady state process fren to «
requires infinite energy or power). Using again the truncation approach, stochastic
processes can also be represented by finite Fourier integrals in the finite (rlé&yal/2)

The total power in this finite interval will then be finite.
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For both non-periodic and stochastic functions over a finite intefVa2, T/2) it
is generally more convenient to also use the power per unit of time. As for periodic
functions, the power per unit time is obtained by dividing the total power over the finite

interval by the length of the interval; i.e.,

Total powerﬂI , T o
L O 2 0
T T _
Total power per unit of tlmg—é 5 E = T
L T2
== TEZ(p(t)Z dt (3.38)

= & [FMP df

—00

[s(hdf

Heres(f) represents the power spectral density function. For a process of finiteTength

is defined by

sf) = T IFOR. (3.39)

The spectrum defined above is a function of both positive and negative frequencies
and is called a “two-sided” spectral density function. However, one does not usually
distinguish between positive and negative frequencies. Moreover, githenreal, the
Fourier transform is an even function; ifle(f)=F(—f). It is therefore customary to express
the spectrum as a function of only positive frequencies. Such a spectrum is called a “one-
sided” spectral density function. Because the total power in the process must remain the

same, the spectral values for the one-sided spectrum are defined as

s(f) = FOR+F(=HR, O 0<f<o. (3.40)
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For realg(t), F(f) = F(-f) and
s(f) = 2F(H|?, O 0sf<ow. (3.41)

Hereafter, the one-side spectral density function will be used since onytyenill be
considered.

It is also convenient to normalize the spectral values so that they express the
percentage of the total power or variation in the process contributed by each frequency.
The normalized spectral valu®g) are given by

s = S0 (3.42)

n-1 '

> s(f)
k=0

A couple of important properties for power spectra are obtained from the properties
of Fourier transforms. One of the most important is the invariance of the spectrum to time

shifting. Given a procesgt) shifted byto, the new Fourier transform is

o0

F(f) = I At+t o) eI2Ti(t+d) dt

00

g2mf J’ @(t+t o) ei2mfigt (3.43)

eI2T F(f) .

The spectruns'(f) for this process is then given by

s'(f) = F'(f) F*(f) = F(f) F*(f) = s(f), (3.44)
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which is identical to the spectrum of the original series. Note that the constant exponential
term in eqgn. (3.43) cancels with its complex conjugate.

The spectrum is not invariant with respect to time scaling, however. Intuitively,
expanding time effectively results in shrinking frequencies, and vice versa. The relation
between two spectra with different time scales can be obtained from egn. (3.28). Given a
function ¢(at) which is scaled in time by a factarthe new Fourier transforfi(f') is, by
eqgn. (3.28),

(e]

F(f) = [ otan eizmiagt = QF%E (3.45)

wheref' :g. The spectrum is then given by

S(f) = F(f) F*()

1 *
o F%EF %E (3.46)
pleSEaH

This results in both a scaling of the frequencies as well as the Fourier transform and
spectrum.

For discretely sampled, infinite length processes, the Fourier transform and spectral
values are defined only for the discrete set of “Fourier” frequehpie%t, k =
—n/2,...n/2 (see discussion of discrete Fourier transform). The discrete form of Parseval's
relation for the total power in a process is obtained in the same way as for the Fourier
integral except that the discrete Fourier transform is used instead. Following the same

substitution and reordering of summations in eqn. (3.33) gives [Press et al., 1986, p. 390]
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n-1 1 n—-1 n—-1
Total power :Z(p(t)2 =3 Z|F(fk)|2 = Zs(fk) : (3.47)
k=0 k=0 k=0

The individual spectral valuegfy) for the power spectral density function are then given

by

s(i) = = F(R. (3.48)

The normalized spectral values are obtained by dividing by the total power as in eqgn.

(3.42). For the discrete case, this gives

sty = S (3.49)

n-1
3 ()
k=0

n-1
Realizing that the variane® is the total power divided hy(o? = %Z @(t)?), the

1=0
normalized spectral values can also be written as

sy = S0 = (b _FOP (3.50)

1 202
PR kzofﬂ(tk)2 i

Sample estimates of the spectrum can be obtained by evaluating the discrete Fourier
transform for frequenciefg = Oﬁ and computing the spectral valisg) using
egns. (3.48) or (3.49). Itis important to note for later that this is equivalent to (i)
evaluating the Fourier coefficierdg andby for the discrete frequencigg using least
squares estimation and (ii) computing the (amplitude) spectrum &@m b?). For real-

valued functions, only positive frequencies need be considered because the negative
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frequency part of the spectrum is the mirror image of the positive part. However, the
negative frequencies will be aliased as positive ones and, combined with the (identical)
positive ones, will result in spectral values twice those computed using egn. (3.48), except
for the zero frequency. This gives the one-side spectrum rather than a two-sided spectrum.
The spectrum computed in this manner is generally referred to as the periodogram
[Priestley, 1981, p. 394; Press et al, 1986, p. 421] and forms the basis of the least squares

spectrum.

3.4 Convolution and Correlation

Another application of Fourier transforms is in the concept of convolution and
correlation. Given two functiongt) andy(t) and their Fourier transfornfigf) andG(f),
we can combine these two functions together in what is called a convolution. For the
continuous case the convolutionggf) and(t), denotedg(t)* (t), is defined by

[Bronshtein and Semendyayev, 1985, p. 582]
@b) * () = I(p(f) t=1)dr , Ot0O (—o,0), (3.51)

whereT is thought of as an argument (time) difference or lag. The convolution theorem
then states that the Fourier transform of the convolution of two functions is equal to the

product of the Fourier transforms of the individual functions [ibid, p. 582]; i.e.,

@) * u ) ~ F() (). (3.52)
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where the symbok again signifies that the functions on either side are Fourier transform
pairs. The Fourier transform is used to go from left to right while the inverse transform is
used from right to left.

For discretely and evenly sampled procegggsandy(t;) ,i = n/2,...n/2, the

discrete convolution is defined by

n/2

@t) * i) = k_Z @) Atiz) . 010 (0,0), (3.53)

2+1

where the lagg—t_k are evenly spaced. The discrete version of the convolution theorem is

then

@ti) * Ut) = FrGk. (3.54)

for frequenciedi, k = 0,...n—1.
Closely related to the convolution theorem in eqgn. (3.51) is the correlation theorem.
It can be shown that the product of a Fourier transform with the complex conjugate of

another Fourier transform can be reduced to the form [Priestley, 1981, p. 211]

F(f) G*(f) = LK(T) g2 dr, Of0 (—oo,0), (3.55)
whereK is called the kernel:
K(r) = Lf(t) g(t-r) dt, O 710 (—00,00). (3.56)
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In the context of spectral analysis, the kei@) represents the cross-covariance function.
Multiplying the Fourier transform by its own complex conjugate gives the autocovariance

functionC(7) (cf. Section 2.5) as the kernel; i.e.,

00

F(f) F¥(f) = _J;c:(r) 2 dr, OO0 (—o0,m), (3.57)

Realizing that this multiplication gives the spectral value for frequitiog covariance and

the spectrum function can be expressed as a Fourier transform pair; i.e.,
Ct) = s(f). (3.58)

This is known as the Wiener-Khinchin theorem. Furthermore, the normalized spectrum

5(f) is the transform pair of the autocorrelation funciit) (cf. Section 2.5) so that
Rt) = 3(f). (3.59)

When computing the convolution of two functions care must be exercised to avoid
so-called “end effects” or “wrap around effects” caused by assuming the functions to be
periodic. For example, when convolving a function with itself (i.e., autocorrelation), data
from the end of the series are effectively wrapped around to the beginning of the series
thereby forming a periodic function with peridd This can have adverse effects but can
be prevented by simply “padding” the data series with enough zeros to avoid any overlap of
original data. To estimate all possible frequencies up to the Nyquist frequency (defined in
Section 3.2), a data seriesrmgboints must be padded wittzeros to completely avoid any

wrap around affect. There is a trade off when doing this, however; the more zeros
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appended to the series, the greater the errors in the sample estimates of the Fourier
transforms. See Press et al. [1992, pp. 533] for more information on end effects.

These indirect expressions in terms of the spectrum are often used as the basis for
the efficient computation of autocovariance and autocorrelation functions using the FFT. It
will also be used as the basis for developing autocovariance functions for unevenly spaced
data to provide objective a priori estimates of covariances and weights that account for
residual systematic effects in least squares modelling. However, it must be realized that
this indirect procedure gives the biased estimate of the autocovariance and autocorrelation

functions [Bendat and Piersol, 1971, pp. 312-314; Priestley, 1981, pp. 323-324].

3.5 Fast Fourier Transform

Any discussion of the Fourier transform would not be complete without mentioning
the so-called Fast Fourier Transform (FFT). Although the term is often used
synonymously with the Fourier transform itself, it is really only a numerical algorithm used
to compute the discrete Fourier transform (DFT) in an extremely efficient manner. The
algorithm, popularized by Cooley and Tukey [1965], revolutionized the way in which the
DFT had been used. Up to that time the DFT was restricted to only small data sets. With
the advent of the FFT algorithm, however, it was quickly employed in a multitude of
applications.

The basic idea behind the FFT is a bisection and recombination process. First the
data is repeatedly bisected into pairs of points by recursively dividing the data into odd and
even numbered points. The Fourier transforms are then computed for each of these pairs
of points and subsequently recombined to form the Fourier transform of the entire data
series. Because the Fourier transform of a pair of data points is a trivial and very fast
computation (no multiplications are needed), the algorithm results in a dramatic increase in

computational efficiency, especially for large data sets. The number of (complex)
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multiplications involved in the direct evaluation of the discrete Fourier transform is of the
order ofn2 whereas the number of such operations in the FFT algorithm (in the
recombination of the individual transforms) is only of the orderlofpn [Press et al.,

1992]. This general strategy was first used by Gauss to reduce the computational effort in
determining planetary orbits and also derived by as many as a dozen others since (see
Brigham [1974] and Bracewell [1989] for more information).

The main limitation of both the discrete Fourier transform and its FFT algorithm is
that the data must be equally spaced. The expression for the Fourier coefficients, and thus
the Fourier transform, are valid only for equally spaced data. Moreover, the FFT algorithm
uses certain properties of the sine and cosine functions for evenly spaced data to reduce the
number of terms that need to be evaluated. For the investigation of systematic effects
which can be functions of many different kinds of arguments that are usually very
irregularly spaced, this precludes the use of the FFT, at least in the computation of the
discrete Fourier transform. A similar problem also arises when there are large gaps in an
otherwise equally spaced data series.

To circumvent the problem of unevenly spaced or “gappy” data, interpolation
schemes are sometimes used where the original data are interpolated to give an evenly
spaced series. This then allows one to use traditional techniques such as the FFT.
However, the accuracy of the interpolating function to represent the original data series
depends on the form of the interpolating function, the smoothness of the original data series
and the presence of large gaps in the data. This presents a dilemma since in order to
properly interpolate the data we must have a good knowledge of their behaviour, but the
lack of this knowledge is usually the reason for computing FFTs in the first place. Another
problem with interpolation is that in the presence of large gaps, they often result in
disastrous results.

A second limitation of the FFT is that the number of data points to be transformed

must be a power of 2 for the FFT to be most efficient. Alternate and mixed radix
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formulations of the FFT also exist but they are much less efficient. The conventional
method of dealing with a number of points that are not a power of two is to again “pad” the
data series with enough zeros to obtain the required number of points for the FFT. This
clearly inflates the number of points to process thereby increasing not only processing time
but also storage requirements. It is most inefficient when dealing with large data sets. In
these cases, one usually only takes the first power of two number of points and omits the
rest. More importantly, zero padding also increases the error in the FFT with respect to the
continuous Fourier transform.

One more limitation of the FFT is that it is restricted to only the set of “Fourier”
frequencies. If frequencies other than these standard ones are present, a phenomenon
known as spectral leakage can degrade the results . To compensate for this, so-called
window functions are employed to reduce this leakage by convolving a tapered Gaussian-
like function with the data series in the Fourier transform. For more on window functions

see, e.g., Priestley [1981, Chapter 7] and Press et al. [1992, Chapter 13.4].

3.6 Other Transforms

The preceding developments have been based on the use of Fourier (trigonometric)
series to approximate functions and stochastic processes. The advantage of using Fourier
series is that the periodic terms are usually easier to interpret physically. Nevertheless,
other approximation or basis functions can be used.

One popular alternative approximation function is the so-called “cas” function
which forms the basis of the Hartley transform [Hartley, 1942; Bracewell, 1986]. This

function is defined as

ca@rft= comftr sir2rft (3.60)
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and is used in place efTft= co@mft-j sin2mtfin the usual Fourier expressions. Note
that the difference between the two is that the Fourier expressions separate the cosine and
sine terms while the Hartley expressions combine them.

In spite of the different functions used in the Fourier and Hartley transforms, they
are similar in shape. In fact, the Fourier transform can be deduced from the Hartley
transform, although this is considered unnecessary because either transform provides a pair
of numbers at each frequency that represents the oscillation of the series in amplitude and
phase [Bracewell, 1989]. Moreover, the amplitude and phase spectra obtained from either
transform are identical, although they are derived in a slightly different manner [ibid.,
1989].

As for the Fourier transform, Bracewell [1986] has also developed a fast Hartley
transform in much the same way as the FFT. The advantage is that the fast Hartley
transform has been shown to be twice as fast as the FFT and uses half as much computer

memory [O'Neill, 1989].
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Chapter 4
The Least Squares Transform

4.1 Introduction

A significant limitation of the traditional techniques for the estimation of
autocorrelation functions, either directly or indirectly via the inverse of the Fourier
spectrum, is that they always require the data to be equally spaced in the argument.
Although the data might be evenly spaced with respect to some basic sampling parameter
such as time, it will generally not be evenly spaced with respect to other parameters that
may better characterize the behaviour of any systematic effects to be modelled by
correlation functions. Some typical parameters that might be used to model such systematic
effects in geodetic problems include spatial distance, satellite elevation angle, atmospheric
temperature, temperature gradient, pressure, etc.; cf.akaancl Craymer [1983a,b],
Craymer [1984; 1985], Varek et al. [1985], and Craymer and Va¥i¢1986] Clearly it
would be very difficult to obtain a data series evenly spaced in even some of these
randomly fluctuating parameters.

Other reasons for seeking alternative techniques are concerned with the limitations
of the discrete Fourier transform and FFT described in the preceding chapter. These
include the use of only the set of standard “Fourier” frequencies (integer multiples of the
fundamental frequency), and the requirement'afé®a points for the FFT algorithm. In
addition, a deterministic model is often estimated and removed from the data prior to any
spectral analysis. Traditional spectral techniques do not consider any interaction or linear

dependence (correlation) between the a priori deterministic model and the implied periodic
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components modelled in the spectrum and in the correlation function. Moreover, the data
cannot be weighted in the Fourier transform computation in accordance with their assumed
probability density function. Thus, some observations with relatively large random errors
will be treated the same as other observations that may be many times more precise.

The aim here is to formulate a more general transform that is capable of handling
such unevenly spaced arguments. The transform is based on the least squares spectrum
computation developed by Vaelc[1969a; 1971] and is referred to here as the least
squares transform and its inverse. Note that this least squares approach is developed here
for real-valued data and, consequently, positive frequencies. It cannot cope with complex
data or negative frequencies, which are useful in distinguishing between prograde and

retrograde motions.

4.2 Matrix Form of Fourier Transform
The basic form of the least squares transform can be derived by first expressing the

discrete Fourier transform (DFT) in terms of matrices of complex exponential functions.

Rewriting eqn. (3.18) in matrix form gives (the superscript “c” denotes a complex matrix)

Fk = A%T @, Ok=0,.n-1, (4.1)

where

e2Mjklo E
Acy, = et = ek (4.2)

Eeznjfitn—l E'
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@(to)
Q= @(t1) (4.3)

bt

Note that the transpose in eqgn. (4.1) is the complex conjugate transpose for complex

matrices (see Golub and Van Loan [1983, p. 9]); i.e.,

AkaT = [e—znjlﬁto e2Tjkty ... e 2Mjkth-1 ] ’ (4.4)

This matrix form of the discrete Fourier transform can be written for each of the discrete
“Fourier” frequencies in eqn. (3.17).
Combining all frequencies together gives the simultaneous transform for all the

standard Fourier frequencies; i.e.,

FC = ACT g, (4.5)
where
0% O
Fe=0Ft 0O (4.6)
|:|Fn_l |:|
e2mifty  e2miity .. e2mjh_1to
AC = [ACfO At "'Acfn—l] — 62”:16t1 ezn:lf.tl eZT[Jif?—ltl E(4.7)
%anf)tn—l e2mifth-1 ... e2Mh-1th—1 E

The transpose in eqn. (4.5) again indicates the complex conjugate transpose where
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AcfoT H Ee—zméto e2mifty ... e 2mifth_1
Acy, T L_ Oe2mfte e2mfty ... e2mith (4.8)

BAcfn_lTH %—Z’Tjﬁ—lto e2Mh-1t1 ... e 2TMh-1tn-1 %

ACT -

Note thatA%, in eqn. (4.1) is the k-th column &Ff corresponding to the specific
frequencyfy.
The inverse discrete Fourier transform expresses each obseggjionterms of
the Fourier transformiy for all of the discrete “Fourier” frequencifs= k/(nA),
k=0,...n-1. This can also be written in matrix form as for the direct transform. Rewriting

egn. (3.19) in matrix notation gives

@) = %Acti Fc, 0i=0,.n-1, (4.9)

where
Ac, = [ e2mibti e2mifti .. e2mif-1ti | . (4.10)

Combining all observations together gives the simultaneous inverse transform; i.e.,

0= %Ac = (4.11)

whereAC is defined as in egn. (4.7) agds defined by eqn. (4.3). Note that the design
matrix is not transposed in the inverse transform and a factém f ibcluded as in the
complex form. Expanding this in terms of the Fourier transforms for the individual

“Fourier” frequencies gives
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1“—1
¢ =4 Z ACs FCx . (4.12)
k=1

Before developing a more general least squares form of the above transforms, it is
necessary to replace these complex expressions with their real-valued trigonometric forms.
It will be shown later that this is because, for unequally spaced data, the real and imaginary
components can, in general, no longer be treated independently of each other. Using

Euler's formula (eqn. (3.10)), the discrete Fourier transform in egn. (3.18) becomes
n-1
Fk = Z o(ti) (coLTifti —j sin2mfti), Ok =0,..n-1 (4.13)
1=0
and the inverse discrete Fourier transform is
n-1

@) = Fo (co2Tyti ) + Z Fi (co2mifty +j sin2mfti), Oi= 0,..n-1.(4.14)
k=1

Note that the sine term is zero for the zero frequency compdetih the above
expressions. Realizing that the real (cosine) and imaginary (sine) terms are two separate
guantities that are independent of each other, the complex expression can be rewritten as

two separate real expressions for each term. That is, for the real term,

n-1
ReFy = Z @(tj) coOL i (4.15)
1=0

and for the imaginary term,
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n-1
Im(Fy) = Z @(ti) sin2rft; . (4.16)
]=0

The discrete Fourier transform in egn. (4.1) can now be expressed in real matrix
notation using eqn. (4.1), with separate columns in the design rdtinthe real
(cosine) and imaginary (sine) terms. The transform is then given by eqgn. (4.1)F&here

andA%, are replaced witkk andAy,, respectively, which are defined as

o= GRS @)

Dcosthto s!nzmtto []
=|:|cos2_mft1 S|n2_n|tt1 B (4.18)

Dco§ﬁﬂ‘tn_1 sin2n|i°tn_1 []

Afk

Note that for zero frequenck=0), Im(Fo)=0 and all the sine terms A% are also zero, so

that

Fo = Refy), (4.19)
DCOSZTtho D

A, = [0 (4.20)
EbOQT[Jtn_]_ |:|

The simultaneous direct and inverse Fourier transforms for all the “Fourier” frequencies are
then given by eqgns. (4.5) and (4.11), respectively, RétandAC replaced by,

respectively,
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fo ) Hrees
0 ef1
F = EF,l E: Im(F1) (4.21)
n.—1|:| %e(':.n—l)
m(Fn-1)
Dcos’Ztho COLT{tg sin2tfty ... coLTi_1te  sin21i_1to
A= coOLTidt1 COLTT{t1 sin2mfty ... coLmf_qt1  sin2mf_qt1 5(422)

Ucomdtn_1 coLmftn—1 Sim2mftn_1 ... co®mi_1tn—1 sin2mf_1tp—1 U
Note that there aneobservations and onfy-1 coefficients to solve for.

4.3 Least Squares Transform

A more general least squares transform (LST) can be obtained from the above
matrix form of the discrete Fourier transform (DFT) by realizing that the DFT and its
inverse are equivalent to least squares interpolation or approximation using trigonometric
functions (i.e., Fourier series) as the basis functions (see, e.g.eKamnit Krakiwsky
[1986, Chapter 12] for a detailed exposition of least squares theory). Specifically, a vector
of observationg can be approximated in terms of a Fourier series by eqn. (3.1), which

can be written in matrix notation as
@ =AX, (4.23)

where

(4.24)

LI
(0] 1]
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is the vector of Fourier coefficients to be estimatedAanepresents the basis
(trigonometric) functions as defined in egn. (4.22). Note thdpfd, there is no
imaginary term and thus rog coefficient. The Fourier coefficiertscan be estimated by
solving for them using the least squares minimization criterion (cf."¥rmicd Krakiwsky

[1986, pp. 204-207]). The solution is given by

% = N-1AT g. (4.25)

whereN = AT A is the normal equation coefficient matrix.
Note that in the above equatii gis the matrix form of the (simultaneous)
discrete Fourier transform in eqn. (4.5). Thus, the least squares transform for all

frequencies simultaneously is given by eqgn. (4.5) and the transform for each frefguency

by

Fk = AqT @, (4.26)

whereAy that part ofA corresponding to only frequenty

The estimated Fourier coefficients in egn. (4.25) can then be written as

X = N-1F. (4.27)

Substituting this in eqn. (4.23) gives the estimated observations

/q\g = AN-1F , (428)
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which represents the simultaneous inverse least squares transform for all frequencies. The

individual observationg(t;j) are then given by

ut) = Ay N-1F, (4.29)

whereAy, represents thieth row ofA corresponding to time.

The conventional Fourier transforms are just a special case of these more general
least squares definitions for equally weighted and equally spaced data. Although the direct
least squares and Fourier transforms are equivalent by definition, the equivalence of the
inverse transforms is not easy to see from the matrix expressions. This equivalence can be
shown by examining the elementshofl. Realizing that the Fourier expressions are valid
only for equally spaced data and the discrete set of “Fourier” frequencies, it can be shown
that the columns oA form an orthogonal basis under these assumptions. The elements of

N (summations of trigonometric products) reduce to

n-1 n for k=1=0 orn/2
Z(cosankti co2rit}) = n/2 for k=120 om/2 | (4.30)
1=0 O for kA4
n-1 0 for k=I=0 orn/2
Z(Sinzmkti sin2rfit;) = On/2 for k=120 om/2 (4.31)
=0 0 for k4
n—-1
> (corfiti sin2mfiti) =0, Ok. (4.32)
1=0

Substituting these iN—1in eqn. (4.28) and expanding in terms of the Fourier transforms

for the individual frequencies gives
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A 1 2 n/2-1
= A, Fo + ZAfk Fk . (4.33)
k=1

The difference between this and the inverse Fourier transform in eqn. (4.11) is the use of
n/2 in place oh for non-zero frequencies {s assumed to be even, otherwise n/2 is
truncated down to the nearest integer). This is because for real data the transform for
negative frequencies is identical to that for positive frequencies. The coluins of
corresponding to these frequencies will be identical thus maksiggular when
simultaneously estimating all frequencies. Including only the positive frequencies will
implicitly account for the identical response for both negative and positive frequencies,
thereby effectively doubling the least squares transform with respect to the Fourier
transform (i.e., it gives a transform which results in a one-sided spectrum as derived in the
next chapter) . Note that the Nyquist frequenck£at2) is also excluded from the
summation since this is aliased with the zero frequency.

It is important to realize that for unequally spaced data the inverse least squares
transform in egn. (4.28) cannot in general be expressed as a summation of independent
contributions from individual frequencies. This is because general contains off-
diagonal elements between frequencies and even between the sine and cosine components
for the same frequency; i.e., these Fourier components are mathematically correlated with

each other (i.e., they are no longer orthogonal or linearly independent).

4.4 Weighted Least Squares Transform

The above developments have implicitly assumed the observations to be equally
weighted. A more general form of the least squares transforms can be derived by
weighting the observations using their associated covariance @gtrikhis also allows

one to model any known correlations among the observations. The general expressions for
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a weighted least squares interpolation or approximation are given by (cfek’anit

Krakiwsky [1986, pp. 204-207])
X = N-1lu. (4.34)
=A%, (4.35)
whereN = AT P A is the normal equation coefficient matrixz AT P ¢, is the normal
equation constant vector aRd= Cg1is the weight matrix of the observations.

Following the same development as for the unweighted (i.e., equally weighted)
least squares transforms, the more general weighted least squares transform for alll
frequencies simultaneously is given by (cf. egn. (4.26))

F=u=ATPg. (4.36)
and the transform for each individual frequefgly (cf. egn. (4.1))

Fk = uk = AfkT Po. (4.37)

Using this in the least squares estimation of the Fourier coefficient in egn. (4.34) and then

substituting into eqn. (4.35) gives the inverse least squares transform (cf. egn. (4.28))
©=A% =A N-1F. (4.38)
The individual observationgt;) are then

o) = Ay N-1F. (4.39)
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Although the symbolic form of these expressions are identical to those for the unweighted
inverse transform in egns. (4.26) and (4.2randF are defined differently (they include

the weight matriXP). Note that the inverse transform is essentially just a least squares
approximation ofpin terms of a Fourier series.

As stated at the end of Section 4.3, it is not possible in general to separately
estimate the individual Fourier transform values for different frequencies because of the
possible existence of mathematical correlations (non-orthogonality) among the Fourier
components (trig functions) due to unequal data spacing or correlations among the
observations. If, however, the observations are equally spaced, equally weighted and
uncorrelated (i.eR =1), and the set of “Fourier” frequencies are used, the normal
equation matrix becomes a diagonal (N5 diag(n,n/2,n/2,...) and the direct and
inverse least squares transforms become identical to egns. (4.26) and (4.33), respectively,
and are thus equivalent to the standard Fourier ones. The Fourier transform is thus just a
special case of the least squares transform.

An attractive feature of the least squares transform is that the covariance matrix for
the Fourier coefficients and the inverse least squares transform are provided by the least
squares theory as by-products of inverting the normal equation Maifx Vaniek and
Krakiwsky [1986, pp. 209-210]). The covariance matrix for the estimated Fourier

coefficientsX is given by

Cq = N-L (4.40)

while that for the inverse transform (interpolated/approximated observations) is

Cp = ACRAT. (4.41)
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It is recalled that only frequencies up to, but not including, the Nyquist frequency
should be included in the Fourier series in order to avoid singularifieslire to the
aliasing effect. In addition, if the data are equally spaced, only the set of standard
“Fourier” frequencies should be used (see Section 3.2). Moreover, if the data are real,
only the positive Fourier frequencies should be included (see property in egn. (3.23)).

This then allows for a total oF1 terms i(/2—1 cosines andl2 sines) to be estimated from
n observations, which gives a nearly unique solution for the Fourier coefficients and
enables the observations to be reproduced exactly using the inverse transform.

In addition to accepting unequally spaced data, another advantage of the least
squares transforms are that they are not restricted to only the set of standard Fourier
frequenciedy = k/(n AtF k/T for k=0,...n—1. Any set of frequencies in the rangeff),
can be used in the expressions. However, only a maximar@ ékquenciesn Fourier
coefficients) can be estimated simultaneously from origservations. Moreover, some
serious repercussions can also arise if the selected frequencies result in some of the Fourier
components (trig functions) becoming nearly linearly dependent with each other, thereby
producing an ill-conditioned or near singuiir To avoid such ill-conditioning it becomes
necessary to either select a different set of frequencies to be estimated (e.g., equally spaced
frequencies) or simply neglect the correlationBlif.e., the off-diagonal blocks) and
estimate the inverse least squares transform separately for the individual frequencies using
eqgn. (4.39).

Another problem in dealing with unequally spaced data is that the Nyquist
frequency is not well defined, if at all. It was thought that, because a single cycle of a
periodic function can be defined with only 3 points, the smallest time interval of a triplet of
adjacent points would represent the smallest period which can be estimated. Care would
also be need to ensure that no pair of points in the triplet are so close together that the triplet
is essentially only a pair of points for all practical purposes. In practice, however, this

triplet interval does not appear to define a Nyquist frequency. As will be shown in the
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numerical tests of Chapter 7, spectra computed to frequencies well beyond this implied

Nyquist frequency do not exhibit the expected mirror image about any Nyquist frequency.

45 Effect of Deterministic Model

So far it has been assumed that the original data is stationary and can be modelled
completely by a Fourier series. In general this is hardly ever the case. It is more common
to first remove the non-stationarity by modelling some known a priori deterministic trends
using, e.g., least squares fitting and to analyse the residual (stochastic) series using the
above techniques. The problem, however, is that there may be linear dependence between
the deterministic model and the periodic components in the Fourier series (the stochastic
model) which may significantly affect the Fourier transform and spectrum.

To account for such effects, it is necessary to reformulate the preceding
developments to accommodate both the deterministic model as well as the stochastic model
(periodic Fourier series components) in the estimation of a least squares transform.

PartitioningA andx,

A =[Ap As], (4.42)
_ OXp 0O
X = OXs O (4.43)

the data series (observation) veapis modelled in terms of both determinisfis and

stochastic (Fourier seriegy components as

@ =AX = ApXp+tAsXs = b+ ¢s. (4.44)
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For the deterministic modéelp is the design matrix ang, is the parameter vector to be
estimated, and for the stochastic (Fourier series) magé,the matrix of cosine and sine
basis functions as defined in eqn. (4.22) gai$ the vector of Fourier coefficients to be
estimated as defined in eqn. (4.24). The aim is to account for the effect of estkpating
the estimation oxs

The weighted least squares estimates of the combined parametek\autdhe
approximated observation vecfpare given by egns. (4.34) and (4.35), where the
matrices are defined as above. Substituting the above partitioned fonasidx into

these expressions gives

D>/</:D O_ ONpp Nps T Oup O (4.45)
Oxs O ONsp NssO Ous [0 '

N
©=1p As]EAP U= Ap%p+Asks = &b+ 35, (4.46)
Oxg O
where
NDD = ADT PAD , (4.47)
NDS = ADT P AS , (4.48)
NSD = AST PAD , (4.49)
NSS = AST P As. (4.50)
Up = ADT P o, (4.51)
Us = AST P Q. (4.52)

Although, for stochastic modelling, we are really only intereste, it is
necessary to account for any effect of the deterministic model on the estim&tidsyof

{p. This is obtained by making use of some well-known matrix identities in the evaluation
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of Xs Specifically, the inversion of the normal equation matrban be written as

[Vanitek and Krakiwsky, 1986, p. 28]

where

ONDpD NDSD_l:DMDD Mps O
ONsp NssO OMsp Mss

Mpp = (Npp —NpsNssiNgp1

= Npp~1+ Npp~ NpsMssNspNpp 1,

Mps = “Mpp NpsNsst = MgpT,

Msp = MssNspNpp~1 = MpsT,

Mss = Nss—NspNpp1Npg—1

= Nss1+ NssINspMpp NpsNsst.

Substituting into egn. (4.45) and gives %er

where the so-called “reduced” normal equation matrix and constant vector are

N
Xs = MgpUup + MssUs

= (Nss—NspNpp 1 Npg—1 (us—NspNpp~ up)

N* = Nss—NspNpp~1Nps,

*

u* = us—NspNpp~Lup .
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Defining the “reduced” weight matriR", which accounts for the effect of the

deterministic model, by

P* = P-PApNpp1ApTP, (4.61)

the normal equations in eqn. (4.58) can be written in the same general form as that without

the deterministic model; i.e.,

Rs = N*-1u* | (4.62)
Cge = N1, (4.63)
where
N1 = (AsT P* Ag) P, (4.64)
u* = AgT P* @. (4.65)

The simultaneous least squares transféfr(for all frequencies simultaneously)
which accounts for the deterministic model is then defined in the same manner as in eqgn.
(4.36):

F* = AP 0. (4.66)

The transform for each individual frequerfgys then (cf. eqn. (4.37))
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Fi = AT P* 0. (4.67)

Similarly, the inverse transform for all observations is defined by eqn. (4.38), using the
reduced forms o andF, as

/\

®=A N-1F", (4.68)
and for individual observationgt;) by

ut) = Ay N*1F*. (4.69)

The expressions for independently estimated frequency components are simply obtained by
ignoring the off-diagonal terms between different frequenciég iand P*

When there is no deterministic mod&p = 0, P* =P and the above expressions
reduce to the same form as in the previous section. Note that the weighted inverse
transform is essentially just a weighted least squares approximaton t&@rms of the a

priori deterministic model and the individual periodic (Fourier series) components.

4.6 Vector Space Interpretation

The least squares transform can be more elegantly interpreted using the concept of
Hilbert spaces and commutative diagrams using the language of functional analysis. The
fundamental component of functional analysis is the space, in which we want to work.

The elements in a space can be real numbers, complex numbers, vectors, matrices as well
as functions of these. Here we consider the more restrictive case of vector spaces

consisting of sets of vectors which can be visualized as positions in the space. A brief
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review of functional analysis as it applies to the geometrical interpretation of the least

squares transform is given. For more on functional analysis see, e.g., Kreyszig [1978].
There are various classifications of spaces. The most general type of space is the

metric space in which the concept of a distance (or mg(icy) between two elements

andy in the space is defined. A normed space is a metric space in which a norm ||¢|| may be

induced as the distance from the null element. The ndtrof|a single elememtis just its

lengthp(x,0). A Hilbert space is a normed space in which a scalar (or inner) product

<x,y> for a pair of elementsandy may be induced by the relations
Il = <, 12, (4.70)
pxy) = k=Ml = [<x=y), (x=yp 122 (4.71)
There are many ways of defining a scalar product. For vector spaces of finite
dimension the most common is the simple linear combination of vector elements; i.e., for

vectorsx andy,

<X, y> = xTy = 3y . (4.72)
|

For compact vector spaces the analogous form of the scalar product is
<X, y> = Ix(t) y(t) dt. (4.73)

A more general definition of the discrete scalar product, and the one used here, is the norm

defined by
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<x,y> =xTPy , (4.74)

whereP, the weight matrix for the vector space, is generally the inverse of the covariance
matrix of the vector elements. This corresponds to a generalization of Euclidean space with
metric tensof, into a Riemanian space with metric terBoNote that for compact
matrices, the vectors and matrices will also be compact, and contain continuous functions.
An interpretation of basic least squares theory in terms of functional analysis is
given by Vaniek [1986]. The theory is interpreted using commutative diagrams which
describe the various transformations between probabilistic (Hilbert) spaces. The same
diagram can be used to interpret the least squares transform. In this diagtam
observation vector belonging to the observation s@a&yis the observation covariance
matrix (not necessarily diagonal) defining the scalar product (and norm and distance) in this
spacex is the parameter vector of Fourier coefficients to be estimated belonging to the
parameter spacé andA is the design matrix transforming the observations to the
parameters, which contains the sines and cosines functions (basis functions).
The commutative diagram is set up by first defining the transformation (i.e., the
observation equationgFAx from the parameter spa¥eto the observation spade The
weight matrice®y andP define the transformations to the dual parameter paead
dual observation spa€®”®, respectively. The transformation from the dual observation
space®” to the dual parameter spaX&. is defined byAT. Assuming the design matrix
A and covariance matri@gyare known, the remaining transformations can be obtained

from the commutative diagram using the following steps.

1. Py = Cg4l (4.75)
2. Py =ATPf A O Cy = Pyl (4.76)
3. A= = CxATP, = ATP, A)"1AT Py (4.77)
4. F = ATP, (4.78)
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5. F1 = ACx = A (ATPyA)L (4.79)

These steps are illustrated in Figure 4.1. Herie,defined slightly differently than in the
preceding developments. It represents the transform operator that acts on the observations,
and not the entire transform itself as defined in Section 4.3. Simiadys the inverse
operator.

It can be seen from the commutative diagram that the least squares Fourier
transformF is a transformation from the observation sp®de the dual parameter space
X via the dual observation spa®&. The inverse least squares Fourier transferfis
then derived by proceeding from the dual parameter sfate the observation spade

via the parameter spa¥e

X L

Parameter Space _
Fourier Coefficients Observation Spac

Dual Dual
Parameter Spax Observation Spac

Figure4.1: Commutative diagram for the direct and inverse least squares transform,

whereF denotes the direct transform aad! the inverse transform.
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The design matriA contains the trigonometric functions defining the Fourier series
representation of the observations. The individual sine and cosine terms (colujhns of
form a basis for the observation space. For the standard Fourier transform, the data are
equally spaced, equally weighted and uncorrelated so that the coluAfer it an
orthogonal basis. The normal equation matrix AT P A then becomes a diagonal
matrix as does the covariance matrix of the parameters. In the more general least squares
transform, the base functions are not necessarily orthogonal, although, in practice, this is

usually the case even with unequally spaced data.

4.7 Applications

The above least squares transform can be applied in the same manner as the
traditional Fourier one, with the added advantage that they can be used not only for equally
spaced data series, but also for unequally spaced series and for any arbitrary set of
frequencies. One of the most important applications (to be discussed in the next chapter) is
the determination of the power spectral density for unequally spaced data that also accounts
for a deterministic model. In this case there is no need to determine a frequency response
function for the deterministic model in order to remove its effect from the spectrum of the
model residuals. The correct spectrum is obtained directly when the deterministic model is
accounted for in the formulation of the spectrum.

Another important application of the least squares transform is the indirect
estimation of autocovariance/autocorrelation functions using the correlation theorem (see
Chapter 6). Instead of transforming the effect of all the spectral values, a smoother
autocovariance function can be obtained by using only the significant spectral values.
Because these significant spectral components are not likely to be evenly spaced, it is
necessary to use the inverse least squares transform to convert them into an autocorrelation

function.
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The inverse least squares transform can also be used in data series approximation
and interpolation problems. In these applications the direct Fourier transform is used to
estimate Fourier series coefficients, which are then used in the inverse transform to
approximate or interpolate the original series. The degree of smoothing of the original
series can be increased by including only frequencies corresponding to highly significant

Fourier coefficients (or spectral peaks).
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Chapter 5
The Least Squares Spectrum

5.1 Introduction

As discussed in the previous chapters, traditional methods of determining power
spectral density and autocorrelation functions are significantly limited in their application
because they always require the data to be equally spaced in the argument. Other reasons
for seeking alternative techniques are concerned with the limitations of the discrete Fourier
transform and FFT commonly used to generate spectra as well as autocorrelation functions
(transformed from the spectrum). These include the use of only the set of “Fourier”
frequencies (integer multiples of the fundamental frequency), and the requirenmént of 2
data points (for the FFT algorithm). In addition, the traditional techniques do not consider
any interaction (correlation) between the deterministic model and the implied periodic
components modelled in the spectrum. Moreover, the data cannot be weighted in the
transform computation in accordance with their assumed probability density function.

Thus, some observations with relatively large random errors will be weighted the same as
other observations that may be many times more precise.

Traditional methods of computing power spectral density functions from unequally
spaced data have often been based on interpolation or approximation. That is, the original
unequally spaced data series was interpolated or approximated to an equally spaced series
for which the standard Fourier techniques could then be applied. The problem, however,
is that this approach really creates a new data series that depends on the smoothness of the

original series, the presence of data gaps and the subjective choice of the interpolating or
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approximating function. The interpolation also tends to smooth out any high frequency
components of the original data series.

To overcome these limitations and difficulties, Vaki§1969a] developed a method
of spectrum computation based on least squares estimation. This method was further
developed in Van&k [1971], Steeves [1981] and Wells et al. [1985] and forms the basis
of other similar techniques in slightly different forms promoted by various authors since
(e.g., Rochester et al. [1974], Lomb [1976], Ferraz-Mello [1981], Scargle [1982], Horne
and Baliunas [1986]). In this Chapter, the same basic least squares spectrum is
reformulated in terms of the newly developed least squares transform. A new
“simultaneous” spectral estimation procedure, somewhat similar to that used by Rochester

et al. [1974], is also developed.

5.2 Matrix Form of Fourier Spectrum

Before giving the expressions for the least squares spectrum, the Fourier spectrum
is first expressed in matrix form. This is done by simply using the matrix expressions for
the Fourier transform (eqns. (4.9) and (4.21)) in the definition of total power (eqn. (3.47))
and the individual Fourier spectral estimates (eqn. (3.48)). Parseval's relation in eqgn.

(3.47) can then be written in matrix notation as

Total power =¢'@ = ni FTF . (5.1)
where
n—-1
go= > @t)? (5.2)
1=0
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n-1 -1
FTF = z FKTFk = z |F(fk)|2. (5.3)
k=0 k=0

The individual spectral components for the two-sided power spectral density function (eqn.

(3.48)) are then given by

1 1
s(f) = SFkT Fk = S IF(fYR, Ok=0,..n-1. (5.4)

The one-sided spectral density function is twice the two-side function and is defined by

Sk

FkT Fk lﬁlF(fk)I2 fork=0
. (55
FT Fk = 2 F(fOR  fork = 1..n/2-1

E
s(f) = [
:

2
n

5.3 Least Squares Spectrum
The least squares spectrum was originally developed by &kafiig69a; 1972] (see
also Steeves [1981] and Wells et al. [1985]). The expressions for this form of the least
squares spectrum (referred to here as the “conventional” form) can be developed in terms of
the (unweighted) least squares transform. First, the total power is given by
Total power =¢' @. (5.6)

Substituting for the inverse least squares transform in eqgn. (4.28) results in

Total power =¢" ¢ = FTN-1F . (5.7)

65



Note that, generally, the total power can not be expressed as a sum of individual
contributions from the different frequency components. As with the inverse least squares
transform, the problem is that with unequally spaced dasnot a diagonal matrix
because the Fourier components (trig functions) are not orthogonal to (linearly independent
of) each other. As explained above, this problem is avoided by simply examining one
frequency at a time, independently (out of context) of the others. This is equivalent to
ignoring the linear dependence between different frequency componBingsthamounts
to defining the spectrum as the independent contribution of each frequency component to
the total power.

Following this approach, the spectral comporsR} (for the one-sided least

squares power spectral density function) is defined by

s(f) = Fk' N1 Fyg, (5.8)

whereN is thek-th diagonal block oN corresponding to frequengy The normalized

spectral values(fy) are then

s(f) _ Fk" Nk1Fk

3(f) =
[0 o @

(5.9)

The normalized spectrum represents the percentage of variation in the original data series
independently explained by each spectral component. In its basic philosophy, this
corresponds to thig? statistic in regression analysis [Draper and Smith, 1981, p. 33].

One of the most significant advantages of the least squares spectrum, other than
handling unequally spaced data, is the ability to estimate spectral components for any real
(arbitrary) frequency, not just the set of “Fourier” frequencies. The expressions in egns.

(5.8) and (5.9) essentially provide continuous estimates for any set of frequencies. The
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usual procedure is to take a set of equally spaced frequencies between zero and the
estimated Nyquist or maximum frequency (note that the Nyquist frequency is undefined for
unevenly spaced data as discussed Section 4.4). The precise frequency location of
significant peaks can then be determined by “zooming” in on that frequency area of the
spectrum. This allows one to locate frequencies for significant peaks to any resolution,

within the limits of the data sampling.

5.4 Weighted Least Squares Spectrum

The more general weighted least squares power spectrum is obtained in a similar
way except that the general (weighted) least squares transforms are used in the above
developments. In this more general situation of an observation weight matrix, the total

power is defined by the weighted sum of squares as

Total power =¢' P ¢, (5.10)

whereP is the inverse of the observation covariance matrix. Substitutinguising the

weighted least squares inverse transform in eqn. (4.38) and notidy tRak = N gives

Total power =g P = FTN-1F . (5.11)

Vanitek [1969a] defines the spectrum as the independent frequency contributions to
this total power (cf. egns. (5.8) and (5.9)). That is, each frequency component is
estimated independently, or out of context, of the others. Steeves [1981] extends this
approach by incorporating the weight matfy ¢f the observations. The independent

estimate of each spectral component is then obtained using the weighted least squares
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transform from eqgn. (4.36) in the spectral estimates given by egns. (5.8) and (5.9), where

the weighted normal equation mathix for the k-th spectral component is defined by

Nk = AT P Ak (5.12)

This type of spectral estimation is referred to here as “independent” or “out-of-context”
spectral estimation.

An alternative approach to least squares spectral estimation can be developed in
which all spectral components are estimated simultaneously; i.e., in the context of the
others being present. This approach takes into account the non-orthogonality (mathematical
correlations) between the spectral components. It is effectively equivalent to the
geometrical projection of the total multidimensional quadratic form representing the total
power, onto the subspace for each individual spectral component. This is analogous to the
way in which quadratic forms and confidence regions are defined for station coordinates in
geodetic networks. This estimation method is developed by first realizing that in eqgn.
(5.11) for the total power the inverse of the normal equation nidtfixs equivalent to the
covariance matrixCq for the simultaneously estimated Fourier coefficients (cf. eqn.

(4.40)). The total power can then be written as

Total power =FT CQF . (5.13)

Substituting for the weighted least squares transform in eqn. (4.36), the total power can be

expressed in terms of the estimated Fourier coefficients:

Total power =XT C¢—1% . (5.14)
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The weighted least squares spectrum is defined as the contri@fiai the
individual frequency components (Fourier coefficients) to the total power. That is, the

quadratic form of the estimated Fourier coefficients for individual frequencies is
s(i) = T Co 1k, (5.15)

whereCg, is the k-th diagonal block of covariance maftix Substituting back in the
weighted least squares transform in egn. (4.37) for individual frequencies, gives the

weighted least squares spectral values
s(f) = Fy T Co Fy (5.16)

which account for any non-orthogonality (mathematical correlations) among the different
spectral components. Note tiGg is not the same ag¢1in the expression for the
independently estimated (out-of-context) least squares spectrum. Usknt) tii@egonal

block fromCg,  is the same as extracting théh diagonal block fronN~1 instead of from

N as in the conventional expressions (cf. Steeves [1981]). Thus, eqgn. (5.16) may also be

written as
s(k) = FkT (N—l)ka (5.17)

The normalized spectral valgéy) for frequencyfy is obtained by dividing by the total

power; i.e.,

s(h) _ Fk' C& Fk _ FkT (N7Y), Fk

PP PT P ¢ pT P ¢

S(f) = (5.18)
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This type of spectral estimation is referred to here as “simultaneous” or “in-context”
spectral estimation.

All linear dependence (mathematical correlation) among the frequency components
are accounted for in this simultaneous estimate of the weighted least squares spectrum.
When the correlations between the frequency components are igddrechomes a
diagonal matrix of normal equation matriégsfor each individual frequendy andCg, =
N1 The expressions given here are then equivalent to those in Steeves [1981], for the
independent estimation of spectral components where no deterministic model is considered.
When the data are also equally weighted, these expressions are identical to thoselkn Vanic
[1969a; 1972]. When the data are equally spaced and the set of “Fourier” frequencies are
usedN-1 = diag(2n), and the weighted least squares spectral values are then equivalent to
the standard one-side Fourier ones given by eqn. (3.41).

Vanitek [1969a; 1972] also includes some simplifying trigonometric identities that
make the evaluation of the element&irt more efficient for equally spaced data (see also
Wells et al. [1985]). These have been omitted from the developments here for the sake of
simplicity, although any routine application of these should include these optimizations to
reduce the required computational effort.

This approach is also similar to that used by Rochester et al. [1974] in that
correlations between different frequencies are accounted for. However, the correlations
among the coefficients for same frequency are implicitly ignored in their expressions
because of the use of complex notation. The real (cosine) and imaginary (sine) terms for
the same frequency are treated independently. Only when the data are equally spaced is
their approach equivalent to the preceding ones.

The same comments on the Fourier transform regarding frequencies greater than the
Nyquist frequency also apply here for the simultaneous estimate of the fully weighted least

squares spectrum. SingularitiedNn! should be avoided by using only frequencies up to
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the Nyquist frequency. Frequencies that are too closely spaced can also cause ill-
conditioning problems in the simultaneous estimation of different spectral values.

Finally, it should be emphasized that these definitions of the least squares spectrum
do not satisfy Parseval's relation. That is, the sum of the these spectral values does not
equal the total power in egn. (5.7). Because of the correlation among the frequencies, there

is no equivalent to Parseval's relation for unequally spaced data.

5.5 Effect of Deterministic Model

In the developments thus far, the mathematical correlations (linear dependence)
between the spectral components and any deterministic model have been ignored, as they
are in the traditional Fourier method. One of the most significant contributions 6Ek¥anic
[1969a; 1972] was the incorporation of the effect of any a priori deterministic model in the
determination of the spectral values. An important consequence (advantage) of this is that it
alleviates the need to determine frequency response functions for the deterministic model.
In the context of spectrum estimation, frequency response functions are used to account for
the effect of the deterministic model on the spectrum. Here, the deterministic effects are
modelled explicitly in the formation of the expressions for the estimation of the spectral
components.

The effect of the deterministic model on the spectrum is obtained in the same way as
for the inverse least squares transform in the previous chapter. The spectrum is defined as
the contribution of each frequency component to the total power. This can be expressed in
terms of the quadratic form of the estimated Fourier coeffideassin egn. (5.15).

However, to account for the effects of the deterministic model, the quadratic form must be
based on estimates from the combined deterministic and “spectral” model as explained in

Section 4.5. That is, the spectral compors€R) for frequencyfy is given by
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s(l) = T Cg 1k, (5.19)

where the matrix components for frequeficgre, from eqgn. (4.62),

Xk = N*-1u* = N*-1AgT P* g, (5.20)

N*-1andP" are defined in eqns. (4.64) and (4.61), respectively. Note that these
expressions are formally identical to those without a deterministic model, except that the
“reduced” weight matriP* in egn. (4.61) is used in placeff The effect of the
deterministic model is therefore completely contained witin

Following the same substitution procedure as in the previous section, the least
squares estimates of the spectral values can be written in terms of the weighted least

squares transforiik in eqn. (4.67) as (cf. Vardk [1971, eqn. (2.4)])

s(k) = FkT C*¢ Fk = FiT (N*-1), Fk . (5.22)

The normalized spectrum is defined as before to be the percentage of the variation in
the data explained by the each spectral component. In the presence of an a priori
deterministic model, this represents the variance explained by each spectral component
which is not accounted for by the deterministic model. The part that is not explained by the
deterministic model is just the residugisfrom the deterministic model alone. That is,

using the notation of Section 4.5,

o = ¢—ApXp, (5.23)
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where
,)ED = NDD_]'UD' (5.24)

andNpp andup are defined by eqns. (4.47) and (4.51), respectively. Expansligud

rearranging gives
ro = ( —Ap Npp~1ApT P) ¢. (5.25)
Substituting this in the quadratic formrgf and simplifying results in
rp! Prp = @' (P—PAp Npp1ApT P) ¢ = ¢ P* o, (5.26)
whereP” is the “reduced” weight matrix accounting for the deterministic model. Dividing

the spectral values eqns. (5.22) by (5.26), the normalized spectrum that accounts for the

deterministic model is

_ sl _ PRI Cy Frie _ Frad (N*71), Py
PTP* @ T P* @ o' P* @

(5.27)

The consideration of which frequencies to include in the weighted least squares
spectrum must be done very carefully when accounting for the effects of a deterministic
model (it is effectively undefined in the spectrum estimation). This is especially important
if periodic trends are present in the deterministic model. In that case, the spectral value for
the same frequency is undefined because it has effectively been accounted for in the
deterministic model and is therefore undefined in the least squares spectrum; i.e., the

periodic component in the deterministic model and the same component in the spectral
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model will be perfectly linearly dependent. Evaluating spectral components for the same
frequencies as the periodic trends will result in a singular normal equation Nfatrix

Present algorithms for the least squares spectrum (e.g., Wells et al. [1985]) check for this
situation by inspecting the determinantNgf; a zero or near zero value indicates a
singularity and thus an undefined spectral value.

Ignoring correlations between spectral components is perfectly acceptable within the
context of improving the deterministic model. In this case the objective is to iteratively
search for only the largest spectral component in a residual data series from a deterministic
model. Any significant spectral values can then be incorporated into the deterministic
model, either explicitly as a periodic trend or implicitly as part of a more complex model of
the underlying physical processes. In this way the method effectively accounts for the
correlations among only the most significant spectral components that are iteratively

included in the deterministic model.

5.6 Statistical Tests

Another great advantage of the least squares spectrum is that the significance of the
least squares spectral values can be tested statistically in a rigorous manner. The following
statistical tests are based on Steeves [1981].

It is well known in statistics that a quadratic form has chi-square distribution with
degrees of freedom equal to the rank of the weight matrix. Expressing the estimated
spectral values in terms of the quadratic form of the estimated Fourier coeffigiemts
egn. (5.15), this quantity then has a Chi-square distriby#ian 1-a) with u=2 degrees
of freedom (representing the rank of the covariance m@gyifor the two Fourier
coefficients for frequencfy) [Vanitek and Krakiwsky, 1986]. A statistical test of the null

hypothesis Ig: s(fk) = 0 can then be made using the decision function

74



O0< x2(2; 1-a); tH:s(fk) =0
s(f) O XZ( » 1-a); accept K s(f) (5.28)
0> x<(2; 1-a); reject K

wherea is the significance level of the test (usually 5%).
If the scale (i.e., a priori variance factmy?) of Cyis unknown, the estimated

value®p2 can be obtained from

02 = , (5.29)

wherev =n-2 is the degrees of freedom (two degrees of freedom lost to the estimation of
the two Fourier coefficients). This estimated variance factor is used to scale the covariance
matrix Cg,, which then has a Fisher distributib(v,u; 1-a) with u=n-2 andu=2 degrees

of freedom. A statistical test of the null hypothesjs #f) = 0 can then be made using

the decision function

s() %s F(u,2; 1-a); accept H: s(fk) = 0

5.30
0> F(v,2; 1-a); reject H ( )

The distribution of the normalized spectral values is obtained by first rewriting the
quadratic formgl P @in terms of the residuafsand estimated observatiopfrom the
spectral model. Realizing that

r=¢—A% = ( —AN-1ATP) g, (5.31)

the quadratic form of the residuals can be expressed as

rTPr = (pT (P_PAN_lAT P)(P = (pT p* Q. (532)
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Noting thatP = Cyand rearranging,

rMTPr = @' P - (@PA)N-1L(ATP ¢
= @' P o-XT Cot X - (5.33)

Thus, the quadratic form of the observations is
fTPf =Xk ColR+rTPr, (5.34)

which represent the total power. The quadratic forms on the right side of egn. (5.34) are
well known (see, e.g., Vargk and Krakiwsky [1986]). The quadratic fokgl Cg,~L
i of the estimated Fourier coefficient has a Chi-square distribution with 2 degrees of
freedom (the number of Fourier coefficients for frequeiRey The quadratic formT Pr
of the residuals has a Chi-square distribution with—u degrees of freedom, wheuas
the total number of Fourier coefficients being simultaneously estimated (if the spectral
values are being estimated independently, th&).

Using eqgns. (5.15) and (5.34) in the expression for the normalized spectral value in

egn. (5.18) and rearranging gives

XkT CiL R _ 1

AT Cg & +rTPr g, rTPr 7
X T CQk—lxk

s(f) = (5.35)

where the ratio of two quadratic forms in the denominator has the following Fisher

distribution
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rTPr
/)sz CQk_le

U

where “-” means “is distributed as”, andand 2 are the degrees of freedom of the
numerator and denominator, respectively. Note the use afhebability level instead of

1-a. This is because of the inverse relation between this F statistic and the spectral value
(for which we want the laprobability level). Given the distribution of the ratio of the
guadratic forms in eqn. (5.35), the distribution of the normalized spectral value is then (cf.

Steeves [1981, eqn. (3.19)))

U 1

A statistical test of the null hypothesig:B(fx) = 0 can then be made using the decision

function

IN

Tl
+ 5 Fy:2: GD ; accept H:s(fk) = 0

(5.38)

s(f0 %
=

> +

i
i

NS NS

1
FU 2 aD y I’eject I_b

The above Fisher distribution can be simplified further using the inverse relation for

the Fisher distribution [Freund, 1971],

Fu2:a = Fou 10 1. (5.39)

When the first degree of freedom is two, this can be approximated by [Steeves, 1981],

Fou1a =5 (a2 = 1) | (5.40)
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This results in a statistical test of the null hypothegissHy) = 0 using the decision

function

+ (a—Z/U - 1)_1)_1; accept HB:s(f)) =0

(fi ES (l (5.41)
S - 5.41
1> (1 + (a=2v - 1)_1) - reject H,

The statistical tests for spectral values that account for the presence of any
deterministic model are exactly the same as above, except that the “reduced” observation
weight matrixP* is used in place of the actual weight makii the computation of the
guadratic forms.

The above tests are the so-called “out-of-context” tests, which test the individual
spectral components out of context of the others being estimated (séek\éamic
Krakiwsky [1986, p. 229-231]). They are identical to those in Steeves [1981] and apply to
the independent estimation of the spectral components, but not to the estimation of all the
spectral values simultaneously. In that case the “in-context” test should be used which
takes into consideration the estimation of the other spectral components. Two approaches
can be used in this regard. The simplest one is to use the simultaneous confidence region
for all m frequency components being estimated. This gives the same test as in egn. (5.41)
except that &1 degrees of freedom is used in place of 2. However, this approach usually
results in too pessimistic (large) a limit to be any real value. A better approach is to use the
relation between the simultaneous probabditypr the joint test of all spectral components
together and the “local” probability, for the test of each spectral component separately.
Following Miller [1966], the relation is given to first-order approximatioralgy= a/m.

The in-context test is then obtained by usigdn place ofa in the above tests. Note that

Press and Rybicki [1989], Press et al. [1992, p. 570] also use the in-context test based on
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simultaneous probability. However, they incorrectly apply it to the testing of the
independently estimated spectral components, where the correlations among the different
frequency components is ignored. The in-context test should only be used for the
simultaneous estimates of the spectral values, where the correlations among all the

frequencies used is accounted for.

5.7 Estimation Algorithms

As stated at the beginning of this chapter, there have been a variety of papers since
Vanicek, [1969a, 1971] describing the same least squares spectrum (independently
estimated spectral components) in slightly different forms; e.g., Lomb [1975], Ferraz-
Mello [1981], Scargle [1982], Horne and Baliunas [1986]. It can be shown, however, that
under the same assumptions all of these are identical toekaninore general approach.

The differences are only the use of slightly different normalization methods and different
numerical methods for solving the normal equations.

In Vanitek [1969a], the direct inversion of the 2x2 normal equation matrix is
optimized by using an analytical expression. In addition to being the fastest algorithm, it
also accounts for the presence of a priori deterministic models and includes various
trigonometric identities for greater efficiency, especially for equally spaced data. Compared
to the FFT, however, the least squares transform and spectrum are computationally much
slower. Unfortunately, a direct comparison of computational speed could not be made
because of the software used. All tests were performed using the MATLAB software,
which has a built-in (compiled) FFT function optimised for speed whereas the least squares
spectrum algorithm was implemented as an external (interpreted) function. Because
external functions execute much more slowly than built-in functions, no fair comparison

between the FFT and least squares algorithms could be made in MATLAB. Nevertheless,
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when confronted with unevenly spaced data, the least squares method is the only correct
approach to use.

Lomb [1975] and Scargle, 1982] solve the normal equations using an
orthogonalization (diagonalization) procedure based on time shifting (a different time shift
is needed for each frequency). This approach is slower than the direct analytical solution of
Vanicek. It also does not account for the presence of any a priori models, except for a
mean. Ferraz-Mello [1981] uses Gram-Schmidt orthogonalization to diagonalize the
normal equations. Again, this procedures is slower than direct analytical inversion and
does not account for the presence of any a priori deterministic models.

Recently, Press and Rybicki [1989] have developed a novel approach to the fast
computation of a least squares spectrum. It is based on the concept of “extirpolation” and
the use of the FFT. Basically, extirpolation gives an equally spaced data series that, when
interpolated to the original times, gives back exactly the original data series. This is also
called reverse interpolation. The FFT is used to evaluate the evenly spaced (extirpolated)
sine and cosine summations in the time-shifting algorithm of Lomb [1975]. The original
extirpolation algorithm used two complex FFTs. The more efficient algorithm uses the
same trigonometric identities used by Vahki§1969a] to reduce the computations to only
one FFT. The biggest disadvantage of this method is that it's limited to only the set of
“Fourier” frequencies due to the use of the FFT. Itis thus not possible to “zoom in” on
significant peaks to better resolve the frequency. The FFT also requdatgoints,
which necessitates zero-padding the data series. As for the other algorithms, the presence
of a priori deterministic models cannot be accounted for. Finally, the extirpolation accuracy
depends on the “oversampling factor” used in the extirpolation to generate many more data
points than the original data series. Greater oversampling of the extirpolated series
provides better accuracy but results in more computations. In spite of the above
limitations, this algorithms works very well and very fast (on the orderdadn, instead

of n2).
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Chapter 6
Stochastic Modelling of Observation Errors

6.1 Introduction

The weighted least squares estimation model allows for the stochastic modelling of
residual errors through the use of a fully populated covariance matrix. This can be used to
account for those systematic effects that have not been modelled explicitly
(deterministically) in the design matrix for the least squares model. The problem with
using fully populated covariance matrices in this manner is the difficulty in determining the
covariance or correlations among the observations in an objective way.

There are a few methods that can be used to determine the variance and covariance
each with their own advantages and drawbacks. One of the most popular of these are the
methods of analysis of variance and variance-covariance component estimation. The
“analysis of variance” (ANOVA) method (also called factor analysis in statistics) can be
found in most standard texts on statistics. Geodetic applications of the technique are
described in detail by Kelly [1991] and in a series of articles by Wassef [1959; 1974;
1976]. Essentially the aim of the method is to divide the measurements into separate
groups (factors which contribute to the overall variation in the data) and to estimate the
variance components for each. The difficulty in applying the method is in defining a
scheme of dividing the observations into separate groups which characterize some
behaviour of the systematic effect being modelled. Often, the factors describing the
systematic effect cannot be so discretely defined, rather they are often of a continuous

nature that precludes lumping them together into separate and distinct groups.
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Variance-covariance component estimation, on the other hand, is based on
modelling deterministically the residual variation in the measurements. The variances and
covariances are expressed in terms of linear models relating these components to various
factors describing the systematic effect. The coefficients (variance and covariance
components) in the variance-covariance model are estimated together with the parameters in
a least squares solution. The technique is described in detail in Rao and Kleffe [1988] and
has been applied to many geodetic problems (see, e.g., Grafarend et al. [1980], Grafarend
[1984], Chen et al. [1990]). It can be shown that the analysis of variance method is just a
special case of this more general approach [Chrzanowski et al., 1994]. The problem with
applying the method is that the estimation of the variance-covariance model coefficients
usually needs to be iterated which can result in biased estimates of the variances and
covariances [Rao and Kleffe, 1988]. This can lead to negative variances, which is
unacceptable.

The approach taken here is to model any residual systematic effects remaining after
accounting for a deterministic model, using autocorrelation (ACF) or autocovariance
(ACVF) functions derived from a power spectral density function of the residuals. This
idea was first proposed for geodetic applications by \ékrénd Craymer [1983a; 1983b]
and further developed by Craymer [1984]. To accommodate unevenly spaced data, a
general least squares transform is developed to determine the normalized power spectrum.
The inverse transform is then used to convert this to an ACF which is converted to an

ACVF.

6.2 Direct Autocovariance Function Estimation

The autocovariance function of an equally spaced data Kgjiean be estimated
directly using the expressions given in Chapter 2. This gives the sample autocovariance

function
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1 n—m
Cltm) = 25 > (1)) (Itti+ Tm-12) (6.1)

=1

wherem = 1,,/Atis the so-called lag number afitis the data series spacing. Note that, as
in eqn. (2.20), the summation is dividedrisymrather than by, in order to provide an
unbiased estimate @f(7). The biased estimate is obtained by dividingnby

For unequally spaced data which are relatively homogeneously distributed, an
averaging procedure can be used. In this approach the unevenly spaced lags are divided
into equally spaced lag intervals or bins, similar to the way in which histograms are
constructed. All lags within the lag interval are summed together in (6.1) to give an
average autocovariance for the lag interval. This method gives a smoothed estimate of the
autocovariance function. The problem is that if the data have large gaps, the lag intervals
may need to be relatively large, resulting in degraded resolution. Séek/anécCraymer

[1983a;b] and Craymer [1984] for more details of this technique.

6.3 Autocovariance Function Estimation via the Spectrum

The autocovariance function for an evenly spaced data series can be most
conveniently derived from the power spectral density function using the Fourier transform.
As discussed in Section 3.4, the autocovariance function can be expressed as the Fourier
transform pair with the spectrum, and the autocorrelation funBifpms the transform pair
with the normalized spectrum. These expressions in terms of the spectrum are often used
as the basis for the efficient computation of autocovariance and autocorrelation functions of
evenly spaced data using the FFT. It will also be used as the basis for developing

autocovariance functions for unevenly spaced data to provide objective a priori estimates of
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covariances and weights that account for residual systematic effects in least squares
modelling.

As mentioned in Section 3.4, care must be exercised to avoid any “wrap around” or
“end” effects when computing the autocovariance or autocorrelation function from the
spectrum. This is most easily achieved by simply padding the data series with zeros out to
double the length of the original series. Furthermore, this indirect estimation via the
spectrum provides the biased estimate of the autocovariance/autocorrelation function. As
recommended by Bendat and Piersol [1971, pp. 312-314] and Priestley [1981, pp. 323-
324], this should be used in preference to the unbiased estimate because the biased one is a
positive definite function which generates a positive definite covariance matrix. The
unbiased ACF and ACVF are not positive definite and result in singular covariance matrices

that are not suitable for generating weight matrices for least squares models.

6.4 Iteratively Reweighted Least Squares Estimation

The covariance matrix generated from the autocovariance function is used to
stochastically model the residual errors in the deterministic least squares model. The basic
idea is to begin with some a priori estimate of the covariance matrix, usually a diagonal
matrix of known variances. A least squares solution is obtained for the deterministic model
and the observation residuals provide an estimate of the random observation errors. The
autocorrelation function is determined for these residuals in order to obtain a more realistic
estimate of the correlations among the random observations errors. This autocorrelation
function is then used together with the a priori variances to generate a new covariance
function for the observations which is included in a new least squares solution for the
deterministic model and new estimate of the residual observation errors. Another
autocorrelation function is then computed and the whole estimation process is repeated

(iterated) until the solution for the deterministic model and covariance matrix converge to a
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stable form. This is referred to an iteratively reweighted least squares estimation and is
identical to the iterated MINQUE technique except that a deterministic model is used there
to model the variances and covariances (see Rao and Kleffe [1988]). The procedure is

illustrated schematically in Figure 6.1.

Covariance Matrix
from A Priori Variances

Y

Weighted Least Squares
Solution for Deterministic Model

Y

Weighted Least Squares
Spectrum of Residuals

Y

ACF from Inverse LS Transform
of LS Spectrum

Y

Full Covariance matrix using
ACF and A Priori Variances

Solution
Converged?

Figure 6.1: Iteratively reweighted least squares estimation process.
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Chapter 7
Numerical Tests

7.1 Introduction

In this chapter, various numerical tests of the least squares transform and spectrum
are given under a variety of different situations. Throughout, the following terminology

and notation is used:

“Fourier” frequencies  Set of integer multiples of the fundamental frequency

LST Least squares transform
ILST Inverse least squares transform
LSS Least squares spectrum

Independent LSS/ILST Independent estimation of the LSS or ILST frequency
components

Simultaneous LSS/ILSTSimultaneous estimation of the LSS or ILST frequency
components

Unweighted LSS/ILST Estimation of LSS or ILST using equally weighted
observations (no weight matrixused)

Weighted LSS/ILST Estimation of LSS or ILST using weighted observations
(weight matrixP used)

ACF Autocorrelation function

Indirect ACF Indirect estimation of the autocorrelation function via the

ILST or the LSS

86



The tests presented here are based on simulated data using a pseudo-random
number generator for normally distributed observation errors and uniformly distributed,
unequally spaced times. Unless otherwise stated, these tests use a deterministic model
consisting of a periodic trend with period 10 (frequency 0.1 Hz). All computations were
performed using the MrLAB numerical and graphical software system.

Tests were performed to ascertain the effects of the following on the LSS and
indirect estimation of the ACF:

« random observation errors

correlations among observations

random sampling (unequally spaced data)

frequency selection

deterministic model
» non-stationary random errors (random walk)
The effects on the LSS and ACF were determined by comparing the results to the known

theoretical form for both functions.

7.2 Effect of Random Observation Errors

To study the effect of random observation errors, three data series of 100 equally
spaced points were used. Each was composed of a periodic trend of amplitude 1 and
period 10, i.e., frequency 0.1 Hz. The first series contained no observation errors. The
second series contained normally distributed random errors with a standard deviation of
1/3. The third data series contained normally distributed random errors with a standard
deviation of 2/3. The three data series are plotted in Figure 7.1.

The least squares spectra (for “Fourier” frequencies) of the three data series are

given in Figure 7.2. Both the independently and simultaneously estimated spectral values
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will be identical in these tests because the data are equally spaced, equally weighted and the
set of “Fourier” frequencies is used. The effect of random observation errors on the LS
spectrum is to reduce the magnitude of the largest spectral peak, which in all cases is
correctly located at the frequency of the periodic trend. The larger the random error, the
greater the reduction in the spectral value for the significant peak. The magnitude of the
reduction in the peaks is equivalent to the inverse of the square of the signal to noise ratio
(ratio of amplitude of periodic signal to standard deviation of noise).

The direct estimates of the autocorrelation functions for the three data series are
given in Figure 7.3. These are unbiased estimates and were estimated using eqgns. (2.20)
and (2.12). The ACFs all exhibit the expected cosine form. However, the functions all
display correlations larger than one at large lags, typical of the unbiased form. As
explained in Section 3.4, this so-called “wild” behaviour is the main reason the unbiased
estimate is not used.

The biased estimates of the autocorrelation functions are given in Figures 7.4 to 7.6
for the three data series, respectively. Both the direct estimate and the indirect estimate via
the inverse LS transform of the LS spectrum are given as well as the difference between the
two. The indirect estimates were derived following the procedure described in Section 6.3,
where zero-padding is used to avoid any “wrap around” effects (see Section 3.4). As
expected, all three ACFs exhibit the correct sinusoidal shape and tapering characteristic of
the biased estimate. However, there is a reduction in the magnitude of the correlation as the
random error increases. Although the differences between the direct and indirect estimates
get larger in direct proportion to the magnitude of the random error, they are negligible for

all three data series.
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Periodic Trend (f=0.1) + Random Error (s=0)
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Figure 7.1: Periodic time series of 100 equally spaced points and period 10 (frequency
0.1 hz) with no observation errors and with normally distributed random errors (standard

deviations 1/3 and 2/3).
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Normalized LS Spectrum - Random Error = 0
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Figure 7.2: Least squares spectra of time series of 100 equally spaced points and period
10 (frequency 0.1) with no observation errors and with normally distributed random errors

(standard deviations 1/3 and 2/3). The horizontal line indicates the 95% confidence limit

for statistically significant spectral peaks.
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Direct ACF (Unbiased) - Random Error =0
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Figure 7.3: Direct estimation of unbiased autocorrelation functions of time series of 100
equally spaced points and period 10 (frequency 0.1) with no observation errors and with

normally distributed random errors (standard deviations 1/3 and 2/3).

91



Direct ACF (Biased) - Random Error =0
1@ T T T T T I

o5 | i ; ; f 5 i i S

Correlation
o
T

-0.5+ .
1 i i ! ! ! ! i i i
0 10 20 30 40 50 60 70 80 90 100
Time Lag
Indirect ACF (Biased) - Random Error =0
g ! ! ! ! ! ! ! !
0.5F .

Correlation
o
T

-0.5+ .
1 i i ; ; | | | | i
0 10 20 30 40 50 60 70 80 90 100
Time Lag
X 107 Indirect-Direct ACF (Biased) - Random Error = 0
6 T T | | T T T T

Diff in Correlation

Time Lag

Figure 7.4: Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with no observation errors.
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Figure 7.5. Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with random observation errors (standard deviation 1/3).
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Figure 7.6. Comparison of direct and indirect (via LS spectrum) estimation of biased
autocorrelation functions of time series of 100 equally spaced points and period 10

(frequency 0.1) with random observation errors (standard deviation 2/3).
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7.3 Effect of Correlated Random Errors

To test the effect of correlations among the random observation errors, it is
necessary to generate a correlated set of exrorhis can be accomplished by finding a
transformatiorl of a set of uncorrelated random errgraith diagonal covariance matrix
Cp, which, by the law of propagation of errors, gives a set of correlated randomeerrors
with the desired covariance mat@y, i.e., for identically normally distributed random

errors Cp=l),
Ce =LChLT =LLT. (7.1)

The above decomposition (factorization) of a matrix into another matrix times the transpose
of itself is known as Cholesky decomposition, wHeis a lower triangular matrix called

the Cholesky triangle or square root [Dahlquist and Bjorck, 1974, p. 158; Golub and Van
Loan, 1983, pp. 88; Press et al., 1992, pp. 89]. Using the Cholesky triangle, the

transformed set of correlated random errors can then be obtained from
E=Ln. (7.2)

In the following tests, the periodic data from the previous section is used with a
standard deviation of 2/3. A fully populated covariance matrix for the observations was

constructed from the autocorrelation function
plti) = e¥25. (7.3)

whereAt=t; —tj = 1. A plot of the time series and correlation function are given in Figure

7.7 using a standard deviation of 2/3.
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Three different types of least squares spectrum were computed for this data series:
() the unweighted independent estimate, (2) the weighted independent estimate, and (3)
the weighted simultaneous estimate. The different spectra all provide good results, each
clearly identifying the periodic component correctly at frequency 0.1 (see Figure 7.8).
Although the unweighted independent LS spectrum displays slightly larger noise at the
lower frequencies than the other spectra, the noise is well within the 95% confidence
interval. The weighted LS spectra provide almost identical results, although the peak at
frequency 0.1 is slightly larger. These results verify the claim by Steeves [1981] that
correlations among the observations have little effect on the resulting spectra.

The direct and indirect (via the unweighted inverse LS transform of the unweighted
LS spectrum) estimates of the autocorrelation function are given in Figure 7.9. The two
ACFs are identical and agree well with the expected form for the periodic data set (see
Figure 7.6), although those here display slightly larger correlations at lower frequencies
due to the a priori correlation function. The weighted indirect ACFs are shown in Figure
7.10. Both exhibit the correct shape for the periodic signal, but that based on the
independently estimated spectrum gives larger correlations than for the unweighted
estimates. On the other hand, the ACF based on the simultaneously estimated spectrum
displays much smaller correlations and thus gives the poorest estimate of the ACF.

Another check on the estimation of the autocorrelation functions was performed by
computing the ACFs only for the correlated errors (the periodic signal was not included).
The ACFs should agree closely with the a priori one used in constructing the correlated
errors (see bottom plot of Figure 7.7). Figure 7.11 shows both the direct and indirect (via
the unweighted inverse LS transform of the unweighted LS spectrum) estimates of the
biased autocorrelation function. Both are identical and agree well with the theoretical
correlation function in Figure 7.7. The departures from the true ACF are due to the
limitations of the random number generator. The indirect weighted estimates via the

inverse weighted LS transform of both the independently and simultaneously estimated LS
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spectra are given in Figure 7.12. All these ACFs display the same shape, except for the

weighted simultaneous estimate which has slightly larger correlations.
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Figure 7.7: Periodic time series of 100 equally spaced points with period 10 (frequency

0.1) and correlated random observation errors (standard deviation 2/3).
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Unweighted Independent LS Spectrum (Normalized)
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Figure 7.8: Unweighted and weighted LS spectra (both independent and simultaneous
estimation) for periodic time series of 100 equally spaced points with period 10 (frequency

0.1) and correlated random observation errors (standard deviation 2/3).
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Direct Unweighted ACF (Biased)
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Figure7.9: Direct and unweighted indirect (via unweighted inverse transform of
unweighted LS spectrum) estimates of biased autocorrelation function for periodic time
series of 100 equally spaced points with period 10 (frequency 0.1) and correlated random

observation errors (standard deviation 2/3).
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Figure 7.10: Weighted indirect estimates of biased autocorrelation function via weighted
inverse LS transform of both independent and simultaneously estimated LS spectra for
periodic time series of 100 equally spaced points with period 10 (frequency 0.1) and

correlated random observation errors (standard deviation 2/3).
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Figure7.11: Direct and unweighted indirect (via unweighted inverse transform of
unweighted LS spectrum) estimates of biased autocorrelation function for time series of

100 equally spaced points with correlated random observation errors only (standard

deviation 2/3).
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Figure 7.12: Weighted indirect estimates of biased autocorrelation function via weighted
inverse LS transform of both independent and simultaneously estimated LS spectra for time

series of 100 equally spaced points with correlated random observation errors only

(standard deviation 2/3).
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7.4 Effect of Random Sampling

Random observation sampling results in an unequally spaced data series in which
case the conventional Fourier expressions are no longer valid. This is the primary reason
for using the least squares transform and spectra. To test the effect of random sampling on
the LS transform and spectra, unequally spaced periodic data series were constructed.

Different lengths of data series were used to examine the effect of the finiteness and
sparseness of the data. The unequally spaced time arguments were created using a pseudo-
random number generator with a uniform distribution (see Press et al. [1991] for an
explanation of the uniform distribution). Three unequally spaced (errorless) data sets with
a periodic trend of period 10 (frequency 0.1 Hz) were generated with 100, 60 and 20
points (see Figure 7.13).

The spectra were computed independently for integer multiples of the fundamental
frequency (0.01 hz), up to frequency 0.5 hz. Because the Nyquist frequency is undefined
for randomly data spacing, the spectra were computed only up to an arbitrarily selected
frequency of 0.5 hz. The absence of a Nyquist frequency is illustrated in Figure 7.14a,
which gives the spectra of the data series up to maximum frequencies of 0.5, 6 and 25 hz.
There is no evidence of a mirror image in these spectra that would indicate the presence of a
possible Nyquist frequency. Also, because of the large correlations between the frequency
components, it is not possible to estimate the simultaneous inverse LS transform due to ill-
conditioning. This will be investigated further in the next section.

The spectra for the three data series are given in Figure 7.14b. The effect of
unequal sampling on the independent LS spectrum is negligible. The spectral component at
frequency 0.1 is correctly located with a normalized spectral value of 1. The correct
location of the spectral peak is also unaffected by the finiteness or sparseness of the data
series. Even with only 20 points the LS spectrum is practically unchanged, except for

greater noise in the spectrum and a larger 95% confidence level.
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The indirect (biased) estimates of the autocorrelation function via the independent
LS spectrum are given in Figure 7.15 for the three data series. Zero-padding was used
prior to computing the spectrum to which the inverse LS transform was applied. All ACFs
display the correct shape and tapering for the periodic signal in the data series. The effect
of the random sampling is to reduce the magnitude of maximum correlation for non-zero
lags (compare top plot in Figure 7.15 with Figure 7.4). The maximum correlation is about
half of the theoretical £1 value for all plots; i.e., the magnitude does not change as a
function of the finiteness or sparseness of the data. The correct shape of the theoretical
ACF is also preserved even with only 20 points.

For comparison, Figure 7.16 gives direct estimates of the autocorrelation functions
computed for the same unequally spaced data series using the interval averaging method
described by Vanak and Craymer [1983a; 1983b] and Craymer [1984]. All ACFs display
the same periodic component as the indirect estimates (overlay Figure 7.16 with Figure
7.15). However, the direct ACF for the 100 point series clearly does not follow the
expected tapered shape (compare with Figure 7.4). Instead, the correlations at both small
and large time lags are significantly attenuated, while correlations at the middle lags are
equal to one. It appears more like a modulated unbiased ACF. The other ACFs agree well
with both the indirect estimates; they are closer in magnitude to the theoretical ACF

(compare with Figure 7.4).
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Figure 7.13: Periodic time series of different lengths of randomly spaced points

(uniformly distributed) with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.14a: LS spectra (independently estimated frequency components) up to
different maximum frequencies for periodic data series of unequally spaced points with

period 10 (frequency 0.1) and no random observation errors.
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Figure 7.14b: LS spectra (independently estimated frequency components) for different
lengths of periodic data series of unequally spaced points with period 10 (frequency 0.1)

and no random observation errors.
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Figure 7.15: Indirect estimates (via unweighted inverse LS transform of unweighted LS
spectrum) of biased autocorrelation functions for different lengths of periodic data series of

unequally spaced points with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.16: Direct estimates (via interval averaging) of biased autocorrelation functions
for different lengths of periodic data series of unequally spaced points with period 10

(frequency 0.1) and no random observation errors.
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7.5 Effect of Frequency Selection

The effect of different selections of frequencies for the simultaneous LS spectrum
was also examined. Note that frequency selection only affects the simultaneous estimation
of the spectral components. It has no effect on the independently estimated LS spectrum
where each spectral component is treated out-of-context of the others (no correlations arise)
and any set of frequencies may be used to correctly locate the significant spectral peaks in a
data series, within the limitations of the sampling theorem (see Section 5.3). This
effectively provides a continuous spectrum, although spectral leakage may affect the result.
The significant spectral components can then be used in the indirect estimation of the ACF
via the simultaneously estimated LS transform or in an improved deterministic model.

On the other hand, the selection of frequencies is of critical importance for the
simultaneously estimated LS spectrum. In this case the correlations among the spectral
components must be carefully considered, otherwise ill-conditioning in the normal
equations for the simultaneous solution of all spectral components can produce completely
wrong results. For example, consider the same data series used in the previous section
(top plot in Figure 7.13), containing 100 unequally spaced (uniformly distributed) points
with a periodic trend of period 10 (frequency 0.1 Hz) and no random errors. Using the
entire set of 50 “Fourier” frequencies in the simultaneous LS spectrum, results in an ill-
conditioned solution. The resulting spectrum fails to detect the periodic trend at frequency
0.1 hz even with no random errors present (see top plot in Figure 7.17).

The correlations among the frequencies can be reduced and the ill-conditioning in
the spectral transform removed by decreasing the frequency sampling to only every other
frequency; i.e., 25 of the original set of 50 frequencies. Although the periodic component
is now visible in the simultaneous LS spectrum, it is still relatively small and only just

statistically significant (see middle plot in Figure 7.17). This is improved further by taking
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every 5th frequency so that only 10 of the original 50 frequencies are used. The spectral
peak at 0.1 is now highly significant.

The same behaviour is also displayed by the indirect estimate of the autocorrelation
function. Note, however, that the original data series needs to be zero-padded to avoid
“wrap around” effects in the ACF. This doubling of the series length results in a
fundamental frequency that is half of that for the original series and twice as many
frequencies. This results in even more severe ill-conditioning and a completely erroneous
ACF where correlations are much greater than 1 (see top plot in Figure 7.18). Decreasing
the frequency sampling to only 50 frequencies improves the ACF but there are still some
correlations greater than 1 (see middle plot of Figure 7.18). The situation is improved
when only 10 frequencies are used. The ACF has the correct cosine form and the
maximum correlations are only slightly larger than 1 (they could be truncated to 1 in
practice).

The problem with decreasing the frequency sampling is that some peaks may be
missed. Clearly, great care must be exercised when selecting the frequencies to use with
the simultaneous estimation of the LS spectrum and the inverse LS transform. Note that by
reducing the number of simultaneously estimated frequencies, one is approaching the
method of independent estimation of the spectral components (the extreme or limiting case
of reducing the number of frequencies).

A better approach may be to instead search for and use only statistically significant
spectral components from the independent estimation of the LS spectrum. These
frequencies can then be used in a simultaneous estimation of the LS spectrum and in the
simultaneous inverse LS transform for the indirect ACF. The results following this
procedure are illustrated in Figures 7.19 and 7.20 for a randomly sampled data series with
two periodic components (frequencies 0.1 and 0.25 hz) and no random errors. The
independent estimation of the LS spectrum correctly identifies the two periodic components

as shown in Figure 7.19. Using only these significant periodic components in the
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simultaneous estimation of the spectrum and the subsequent simultaneous inverse

transform gives an indirect ACF that agrees with the theoretical form ohbiasedrather

than the biased, ACF, rather than the biased as shown in Figure 7.20. On the other hand,
the ACF derived from the inverse transform of the entire independently estimated LS
spectrum provides the expected biased form ACF. It appears that reducing the number of
frequencies in the inverse transform gives an ACF that more closely agrees with the
unbiased estimate. The biased ACF can be obtained by simplynusiptace of the

divisor (h—K in the expression for the unbiased ACF in egn. (2.20).
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Figure 7.17: LS spectra for different sets of simultaneously estimated frequencies for
periodic data series of 100 unequally spaced points with period 10 (frequency 0.1) and no

random observation errors.
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Figure 7.18: Indirectly estimated LS autocorrelation functions via the LS spectrum using
different sets of simultaneously estimated frequencies for periodic data series of 100

unequally spaced points with period 10 (frequency 0.1) and no random observation errors.
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Figure 7.19: Periodic time series of randomly spaced points with frequencies 0.1 and

0.25 hz and no random observation errors (top), and independent estimation of the LS

spectrum (bottom).
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Figure7.20: Indirectly estimated ACF via the inverse LS transform of the independent
LS spectrum using all frequencies (top) and of the simultaneous LS spectrum using only

the two significant spectral peaks at 0.1 and 0.25 hz (bottom).
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7.6 Effect of Deterministic Model

The effect of the deterministic model on the LS spectrum and indirectly estimated
autocorrelation function is to absorb any spectral components that are highly correlated with
the deterministic model. These spectral components are usually at the lower frequencies,
unless some high frequency periodic trends are included in the deterministic model. The
deterministic model is accommodated by accounting for its effect within the estimation of
the LS spectrum and inverse LS transform following the approach described in Chapters 4
and 5.

To test the effect of a deterministic linear trend model, a 100 point equally spaced
data series consisting of a quadratic trend (1 + 0.02 t + 0.090@%dt a periodic residual
trend of frequency 0.01 hz was generated with no random errors (see top plot in Figure
7.21). The quadratic trend will tend to alias as a long period trend which may result in
erroneous estimates of the spectrum of the residuals if the correlations with the quadratic
model are not accounted for. This is evident in the middle plot of Figure 7.21, where the
LS spectrum displays a peak at 0.02 hz while the actual periodic signal should be at 0.01
hz. There is also some spectral leakage into the neighbouring frequencies at 0.01 and 0.03
hz. Accounting for the correlations with the deterministic model results in a spectrum that
correctly identifies the 0.01 hz peak and eliminates the spectral leakage (bottom plot in

Figure 7.21).
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Figure 7.21: Quadratic trend time series with periodic component (frequency 0.01 hz)
and no random errors (top); LS spectrum of residuals from quadratic trend model (middle);

LS spectrum accounting for effects of quadratic model (bottom).
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7.7 Effect of Non-Stationary Random Errors (Random Walk)

Another kind of correlated error are non-stationary random errors. One example of

this is the simple random walk model where the egrat timetj is the accumulation of a

white noise process [Papoulis, 1965]; i.e.,
i
& =)0, (7.4)
1

where the; are normally distributed random variables with zero mean. One such equally
spaced random walk data series with a unit standard deviation is displayed in Figure 7.22
(top plot). This 100 point data series is actually a evenly sampled subset (every fifth point)
of a much larger 500 point random walk data series using a white noise process with unit
standard deviation. The theoretical spectrum for such a process is inversely proportional to
the square of the frequency [Zhang et al., 1997]. The computed LS spectrum is given in
the middle and bottom plots of Figure 7.22. The bottom plot uses a log scale for both axes
and exhibits a linear trend with a slope of about —2 corresponding to the exXpécted

relation for a random walk model. The direct and indirect autocorrelation functions are
given in Figure 7.23. The indirect estimate via the LS spectrum (zero-padding is used)
agrees well with the direct estimate. The differences between them shown in the bottom
plot of Figure 7.23 increase in direct proportion to the lag. The indirect ACF departs from
the direct ACF to about 0.5 at the highest lag.

To test the effect of the data sampling, an unevenly spaced random walk data series
was generated by randomly sampling the same 500 point random walk series used above
(see Figure 7.24). (A uniform random number generator was again used to generate the
random selection of 100 points; see Section 7.4.) The LS spectrum is given in the bottom

two plots. The effect of the random sampling is to flatten out the spectrum at the higher

119



frequencies. The inverse square frequency relation only holds at the lower frequencies.
This behaviour was also found by Zhang et al. [1997]. The indirect estimate of the
autocorrelation function via the independent LS spectrum (with zero-padding) is also
significantly affected by the random sampling (see Figure 7.25). It now drops off much

more rapidly in comparison to the direct estimate in Figure 7.23).
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Figure 7.22: Evenly sampled 100 point random walk time series (standard deviation 1)

(top) and its corresponding LS spectrum.
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Figure 7.23: Direct (top) and indirect (bottom) autocorrelation functions for 100 point

random walk data series.
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Figure 7.24: Unevenly sampled 100 point random walk time series (top) and its

corresponding LS spectrum.
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Figure 7.25: Indirect estimate of autocorrelation via the independently estimated LS

spectrum for the unevenly sampled 100 point random walk time series.
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Chapter 8
Some Applications in Geodesy

8.1 Introduction

There have been many applications of time series analysis in geodesy to the study
of tide gauge data, gravity data and geodynamics. In particular, the method of least squares
spectral analysis has been applied to studies of the Earth-pole wobble bgk\|4869b]
and Rochester et al. [1974]. However, there have been few applications of time series
analysis techniques to other kinds of geodetic data. The few studies employing these
technigues have been mostly applied to levelling data (see, e.g.ekantt Craymer
[1983a, 1983b], Craymer [1984], Vaarlcet al. [1985], Craymer [1985], Craymer and
Vanitek [1985, 1986, 1990]). More recently time series analysis techniques have also
been applied to electronic distance measurement (EDM) data by Langbein et al. [1990] and
Langbein and Johnson [1997], and to Global Positioning System (GPS) data by EI-
Rabbany [1994], King et al. [1995] and Zhang et al. [1997]. In EI-Rabbany [1994], only
standard Fourier (and FFT) methods in the equally spaced time dimension are considered.
The study by King et al. [1995] also assumed equally spaced time arguments. Only the
recent work of Langbein and Johnson [1997] and Zhang et al. [1997] have considered
unequally spaced data. In particular, Zhang et al. [1997] have used the periodogram as
defined by Scargle [1982], which can be shown to be a special case téRmni@inal
method (see Section 5.7). Estimation of covariance and correlation functions for stochastic
modelling of errors, however, was still based on traditional methods assuming equally

spaced data.
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The studies by Craymer et al. have applied time series techniques more generally to
arguments that are not necessarily equally spaced in order to search for systematic errors
that depend on these quantities. All these studies have used the unweighted form of the
independently estimated least squares spectrum to search for systematic errors in precise
levelling. Here, the weighted form of the least squares approach to spectrum and
autocovariance function estimation are applied to the stochastic modelling of errors using
two real examples: estimation of the deformation of an EDM baseline across the San
Andreas fault using the same data as in Langbein and Johnson [1997], and GPS single
point positioning using pseudo-range observations (the typical positioning data used by

most handheld GPS receivers).

8.2 EDM Deformation Measurements

Electronic distance measurements (EDM) is the most precise distance measuring
technique at close to moderate ranges (about 1 km). The most accurate EDM instruments,
such as the Kern ME5000, can routinely obtain submillimeter repeatability. The most
accurate EDM instrument is based on dual frequency ("two-colour") lasers (see Slater and
Huggett [1976]). The two measuring frequencies allow one to more directly determine and
correct for the refraction effect (which is a function of the frequency of the laser). For this
reason, two-colour EDM instruments are often used in southern California by Earth
Scientists to monitor the crustal deformation around the San Andreas fault (see, e.g.,
Savage and Lisowski [1995]).

Here the least squares spectral analysis technique is applied to the same data used
by Langbein and Johnson [1997] to search for possible systematic signals in their two-
colour EDM data. Traditional spectral techniques were used by Langbein and Johnson for
this purpose. Because the observations are at irregular time intervals, some necessary

approximations, specifically interpolation, had to be made to estimate their spectra. No
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such approximations are needed for the least squares technique which is an ideal application
of this method.

The data used in this analysis are part of the Pearblossom network, near Palmdale
in southern California and were provided by J. Langbein (personal communication, 21
February 1997) of the U.S. Geological Survey, Menlo Park, CA. The network is radial in
design, where all distances (baselines) are measured from Holcomb to twelve surrounding
monuments at distances from 3 to 8 km (see Figure 8.1). Only the Holcomb-Lepage
baseline with a nominal distance of 6130 m was used in this analysis. Initially the baseline
measurements at Pearblossom were made several times per week for 4 years (1980-1984).
Since about 1987 they have been reduced to about once every 3 or 4 months, although each
baseline is measured twice during each network re-observation. In addition, different
instruments and monuments have been used over the years and there have been a number
of earthquakes. Consequently, the data have been reduced to changes in baseline length
from the nominal value and grouped into sets sharing common EDM instrumentation and
monuments between earthquakes. The time series of the Lepage baseline measurements is
given in Figure 8.2. Note the different offsets between each data group and the consistent
linear trend (expansion of the baseline) for all groups. The different datum offsets
represent biases in the measured differences due to the different instrument/monument
combinations or the occurrence of earthquakes. It was also noted that several observations
were repeated within a couple of hours of each other (two within 15 minutes!). To avoid
excessively large temporal correlations under these circumstances, only the second (repeat)
observations were used.

The different biases between measurement groups necessitate accounting for a
separate datum offset for each. Likewise, the consistent trend for all groups necessitates
modelling a common linear trend for all groups. Least squares estimates of these model
parameters are given in Table 8.1, where the datum offsets are all referenced to the first

measurement epoch. The 1.72 + 0.07 mm/year linear trend (extension of the baseline)
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Figure 8.1: Location of the Pearblossom network in California used to measure crustal
deformation with a two-colour EDM instrument and location of the Holcomb-Lepage
baseline spanning the San Andreas fault running through this network [after Langbein and

Johnson, 1997, Figure 1].
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Figure8.2: Changes in length of Holcomb-Lepage baseline. Different observation

groups are denoted by different symbol colour/type combinations.
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Table8.1: Least squares estimates of linear trend and datum

offsets.
Estimate Std t Statistic
Offset #1 (mm) -2.3 0.1 22.4
Offset #2 (mm) -3.2 0.2 17.0
Offset #3 (mm) -4.2 0.2 17.5
Offset #4 (mm) -4.8 0.5 9.5
Offset #5 (mm) -15.4 0.4 35.0
Offset #6 (mm) -20.1 0.7 27.6
Offset #7 (mm) -7.1 0.4 20.3
Offset #8 (mm) -10.5 0.5 19.5
Linear Trend (mm/yr) 1.72 0.05 34.4

agrees well with the 1.67 value determined by Langbein and Johnson [1997]. In the least
squares solution, the data were weighted using standard deviations provided by J.
Langbein (personal communication, 21 February 1997). All estimated model parameters
were statistically significant at any reasonable significance level and were removed from the
data leaving the residual series in Figure 8.3. It is this data series that is used in the
following spectral analysis.

Before performing a spectral analysis, appropriate frequencies (i.e., frequency
spacing and range) must be chosen. The total length of the data series defines the smallest
frequency spacing that can be resolved without spectral “leakage” from adjacent peaks.

The frequency intervalYf is defined by

Af=fy = = (8.1)
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Baseline Length Residuals (Weighted Soln)

4 T T T T T T T
o

€ 2r $++ o A
S

o 5

g O o °© 7
& -2} 0o o

+
| | | | | | | |

-4
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998
Time (days)

Figure8.3: Comparison of residual baseline length changes after removal of estimated
distance offsets for each observation group and a common linear trend. Different

observation groups are denoted by different symbol colour/type combinations.

whereTo = (tmaxtmin) IS the fundamental period afigis the fundamental frequency (see
Section 3.2, eqn. (3.17)). The largest frequency that can be determined by the data series
is defined by the Nyquist frequenfyy. It corresponds to the time interval over a triplet of
adjacent points, the minimum number of points for the unambiguous determination of a
periodic component.

The Nyquist frequency is not clearly defined for unevenly spaced data. For evenly
spaced data, it is simply twice the time interval between any pair of adjacent points (i.e.,
twice the sampling intervadll. The Nyquist frequency is then defineds 1 / (2At)

(cf. Section 3.2). This represents the largest frequency (smallest period) the data series is
capable of reliably estimating without aliasing effects. For unevenly spaced data series, the
distribution of possible triplets of points can vary significantly and thus there is no well
defined Nyquist frequency present. In theory, the highest frequency (that can be estimated
from a data series) will correspond to the smallest point triplet interval. This interval

corresponds to the smallest period (maximum frequency) that can possibly be determined
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from the data series. However, in practice, the spectra generally exhibit no mirror image
about this or any other frequency when the data are unevenly and randomly spaced. The
exception is when dealing with data that are regularly spaced as multiples of some common
interval or evenly spaced except for gaps.

For the baseline length residuals in Figure 8.3, the variation in possible Nyquist
frequencies is illustrated in Figure 8.4 in terms of histograms of the lengths (time intervals)
of all possible point triplets (“Nyquist periods”). The smallest triplet interval is about 1 day
corresponding to a Nyquist frequency of 1 cy/day. This is because the measurements were
collected on a regular daily basis in the beginning. In the following analyses, spectra are
therefore estimated at integer multiples of the fundamental frequency up to a Nyquist

frequency of 1 cy/day.
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Figure 8.4: Histograms of lengths of point triplets (“Nyquist periods”) corresponding to

possible Nyquist frequencies. Bottom plot gives a more detailed histogram at 1 day.

131



In the estimation of the weighted least squares spectrum of the baseline length
residuals, any linear dependence (mathematical correlation) with the estimated deterministic
model (distances offsets and linear trend) are taken into account as described in Sections
4.5 and 5.5. The spectrum is plotted in Figure 8.5 with respect to period instead of
frequency for easier interpretation. There are clear significant spectral components at
periods of 2 and 8 years, in addition to several peaks at periods shorter than a year. The
lower plot in Figure 8.5 enlarges the short period range and shows significant spectral

components at periods of about 1, 100, 150 and 200 days.

Weighted LS Spectrum of Residuals
0.2 ‘ ! ! ! ! ! !

Spectral Value

; ; i ; i
6 8 10 12 14 16
Period (years)

Weighted LS Spectrum of Residuals
0.2 ! ! ! ! ! ! ! ! !

Spectral Value

I I
0 50 100 150 200 250 300 350 400 450 500
Period (days)

Figure 8.5 Weighted least squares spectra (independently estimated) of baseline length
residuals from the deterministic model in Table 8.1. The horizontal line is the 95%

confidence interval for detecting significant spectral values.
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The 8 year period is interesting because it is also visible in the residuals between
about 1984 and 1996 (see Figure 8.3). It was thought that this might be due to a possible
additional datum offset at about 1988.7 in the data group between 1984.2 and 1992.5 (see
Figure 8.2). Apparently, the instrumentation had been taken down and set up again at this
time but it was thought that this was done accurately so as not to produce any additional
bias in the distance measurements (J. Langbein, personal communication, 21 March 1997).
To check for the significance of such a bias, an additional datum offset was estimated at
1988.7. This resulted in replacing the 1984.2-1992.5 group (with datum offset #5) with
two new groups; 1984.2-1988.7 with datum offset #5 and 1988.7-1992.5 with new datum
offset #5a. Figure 8.6 shows these two new groups together with the time series of length
changes. The least squares estimates of the model with the additional offset (#5a) are given
in Table 8.2 and the residual series after removing the model is given in Figure 8.7. It was
found that the datum offsets #5 and #5a for the two new groups were statistically different
from each other at any reasonable significance level (t statistic = 7.0) and both biases were

therefore modelled in the following analyses.
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Figure8.6: Changes in length of Holcomb to Lepage baseline with additional datum
offset in observation group from 1984 to mid-1992. Different observation groups are

indicated by different symbol colour/type combinations.
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Table8.2: Least squares estimates of linear trend and datum

offsets, including additional datum offset (#5a).

Estimate Std t Statistic
Offset #1 (mm) -2.0 0.1 19.3
Offset #2 (mm) -2.8 0.2 15.1
Offset #3 (mm) -3.6 0.2 15.5
Offset #4 (mm) -4.2 0.5 8.7
Offset #5 (mm) -15.3 0.4 36.9
Offset #5a (mm) -12.6 0.6 21.9
Offset #6 (mm) -17.1 0.8 21.3
Offset #7 (mm) -6.2 0.4 17.4
Offset #8 (mm) -9.2 0.5 17.0
Linear Trend (mm/yr) 1.51 0.06 26.9
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Figure8.7: Comparison of residual baseline length changes after removal of estimated
datum offsets, including additional offset, for each observation group and a common linear
trend for all groups. Different observation groups are denoted by different symbol

colour/type combinations.
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The weighted least squares spectrum for the residuals after removing the estimated
deterministic model with the additional datum offset is given in Figure 8.8. The most
obvious difference from the previous spectrum is that the peak at 8 years has now been
significantly reduced by the introduction of the additional datum offset in the model.
However, there still remains a large peak at about 1000 days (2.5 years) that accounts for
15% of the noise in the residual data series. One possible explanation for such an
interannual behaviour may be an El Nifio warming effect, which has frequencies of

between 2 and 4 years during this time period. The warming effect is generally

Weighted LS Spectrum of Residuals
0.2 ‘ ! ! ! ! ! !

Spectral Value
o
|_\
T

0.05}
0
0
Period (years)
Weighted LS Spectrum of Residuals
0.2 ! ! ! ! ! ! ! ! !
o 0.15} -
©
> : : : : : : : ‘ ‘
< 0.1 : : 3 3 3 3 3 3 3 .
° : : : : : : ! ! !
<] : : : : : : : :
?0.05F M z z | | | T
MMM '\ N YN i N~ 7

0 50 100 150 200 250 300 350 400 450 500
Period (days)

Figure 8.8 Weighted least squares spectra of baseline length residuals from the
deterministic model with additional distance offset. The horizontal line is the 95%

confidence interval for detecting significant spectral values.
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accompanied by more frequent and severe wet weather which could cause monument
motion due to higher levels of ground water. In addition, the “piling up” of warmer waters

in the eastern Pacific could also possibly led to additional crustal loading on the western
seaboard of North America. The other significant peaks are at short periods and are more
clearly identified in the lower plot of Figure 8.8. The largest peaks in this frequency range
are at about 150 and 210 days. Curiously, these peaks are symmetrical (30 days) about
small central peak with a semi-annual period (180 days). According toekda@69b],

this corresponds to a possible modulation of a semi-annual period by a 30 day period. The
semi-annual period may be related to weather. For example, it is well known that southern
California generally has wet spring and fall and a dry summer and winter which could
conceivably cause a semi-annual period in the presence of ground water, thus possibly
contributing to a semi-annual behaviour of the motions of the geodetic monuments. The 30
day period may be related to lunar tidal effects. Other peaks evident in the spectrum are at
period of about 110 days and 1 day. The diurnal period is believed to be a consequence of
the usual diurnal behaviour of many systematic effects related to atmospheric conditions,
such as atmospheric refraction and heating (expansion) of the ground and monuments. The
other notable feature of the spectrum is the absence of an annual period. In fact, the
spectral value for this period is almost exactly zero, indicating that such a period had
already been removed from the data. This was denied by Langbein (personal
communication, 21 March 1997), however.

Langbein and Johnson [1997] also argue for the presence of a random walk signal
in the residual data series. Their spectrum for the Holcomb-Lepage baseline was computed
by first interpolating the unevenly spaced measurement series to an evenly spaced one by
averaging the data spanning 15-35 days either side of the missing point. White noise was
also added to their interpolated value. The power spectrum was then computed using the
FFT technique and plotted against the log of the frequency (see Langbein and Johnson

[1997, Figure 3]). Their plots display a clear trend proportional 18 a# expected for a
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Figure 8.9 Semi-log (top) and log (bottom) plots of weighted least squares spectra of

baseline length residuals from the deterministic model with additional datum offset. The

straight line represents a —0.60 linear trend at low frequencies (<&x10

random walk process (see Section 7.7). For comparison, the weighted least squares

spectra is displayed in Figure 8.9 (top plot) using the same semi-log frequency plot. No

clear 1/f2trend is apparent in this spectrum. The spectrum is also displayed in Figure 8.9

(bottom plot) using a full log plot, where the presence of random walk noise should

produce a negative linear trend at low frequencies, as discussed in Section 7.7. A small

negative trend (—0.60 + 0.08) is visible in the least squares spectrum at frequencies below 4
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x 10-2 cy/day, which grows even smaller for higher frequencies. However, this linear
trend is proportional to 1/8-6 rather than 178 as characteristic of a random walk process.
The autocorrelation function for the observations was indirectly estimated from the
inverse least squares transform of the independently estimated, weighted least squares
spectrum following the iterative procedure outlined in Section 6.4. The a priori standard
deviations of the data were used to generate a priori observation weights.. The data series
was also zero-padded prior to computing the spectrum to avoid any wrap around effects in
the autocorrelation function as described in Section 3.4. The main difficulty encountered
was with the large number of possible time lags for which the autocorrelation needed to be
computed. For unevenly and randomly spaced data, there are in general as many different
lags as there are combinations of observation pairs. For the Holcomb-Lepage distance
measurements, there are 361 observations for which there are 65,341 unique possible time
lags (number of off-diagonal elements in the observation covariance matrix). It was
therefore impractical to compute the autocorrelation function for all lags at once. Instead,
the ACF was computed separately for the lags corresponding to each row of the
observation covariance matrix. Only the autocorrelations for the upper triangular part of
each row needed to be computed. The entire correlation rRdtsixthe observations was
assembled in this way and the full covariance mé&nxas obtained using the a priori
standard deviations of the observations (which were also used in the computation of the

weighted spectrum); i.e.,

C =SRS, (8.2)

whereS s a diagonal matrix of the a priori standard deviations. The autocorrelation
function for is plotted in Figure 8.10 together with an enlargement at short lags. Although
there is a periodic behaviour in the enlarged plot, the magnitude of the correlations are small

even for short lags. No explanation was found for small correlation “spikes”.
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Figure 8.10: Indirect ACF, and enlargement at short lags, estimated from zero-padded

time series of Holcomb-Lepage length changes with additional datum offset.

The deterministic model of the datum offsets and linear trend were re-solved using
the new full covariance matrix. The solution is given in Table 8.3 with the additional
datum offset (#5a) at 1988.7 included. Because of the small correlations, there is little
difference in the estimated offsets and trend between this solution and that based on only a
diagonal covariance matrix (Table 8.2); all are statistically compatible. However, in most
cases the estimated standard deviations of the offsets and trend are larger when the full

covariance matrix is used, indicating greater uncertainty in the estimated parameters.
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Table8.3: Least squares estimates of linear trend and datum
offsets, including additional offset (#5a) and using estimated full

observation covariance matrix based on computed ACF.

Estimate Std t Statistic
Offset #1 (mm) -1.7 0.2 7.8
Offset #2 (mm) -3.6 0.2 16.2
Offset #3 (mm) -4.6 0.2 20.8
Offset #4 (mm) -4.1 1.0 3.9
Offset #5 (mm) -14.0 0.3 51.3
Offset #5a (mm) -11.9 1.0 12.3
Offset #6 (mm) -16.2 1.3 12.4
Offset #7 (mm) -5.8 0.6 9.3
Offset #8 (mm) -8.9 1.2 7.4
Linear Trend (mm/yr) 1.44 0.09 16.3

Specifically, the standard deviation for the linear trend is increased from 0.06 to 0.09

mm/yr. This is thought to be caused by a slight reduction in the overall redundancy due to
the linear dependence (mathematical correlations) among the observations. There were also
some significant differences in the correlations between the estimated parameters. For
example, the correlation between offsets #5 and #5a was reduced from 0.75 to 0.44. This
caused the difference between the two offsets to become less statistically significant (t
statistic reduced from 7.0 to 2.4). Nevertheless, the difference is still statistically

significant at the 95% confidence level, leading us to still consider the possibility that the

addition datum offset is real.
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Table8.4: Summary of estimated linear trends with and without

extra offset and correlations.

Linear Trend + Standard Deviation

(mmlfyr)
Without Corr. With Corr.
Without extra offset 1.72 £ 0.05 1.61 £ 0.07

1.67 [Langbein & Johnson]
With extra offset 1.51 + 0.06 1.44 + 0.09

Finally, the estimated linear trends (baseline expansion) are summarized in Table
8.4. The main difference with the estimate from Langbein and Johnson [1997] is due to
the use of the additional datum offset #5a. When the offset is not used, the estimated trend
with or without the observation correlations is not significantly different from Langbein and
Johnson's. The differences are well within the 95% confidence intervals. When the extra
offset is used, the linear trends are reduced by about 0.2 mm/y with or without the use of
correlations. These are significantly different at the 95% confidence level. The standard
deviation of the linear trend is only slightly increased by the additional offset.

The use of observation correlations derived from the estimated autocorrelation
function also reduces the magnitude of the linear trends both with and without the extra
offset. However, the reduction is only about 0.1 mm/yr in both cases and is not
statistically significant at the 95% confidence level. The correlations also increase the
estimated formal standard deviations of the linear trends by about 50%, even though the
magnitude of the autocorrelation is relatively small. This increase is thought to be due to a
implied reduction in the total redundancy (the existence of correlations means there are
effectively fewer truly independent observations).

Finally, it is noted that the estimated linear trend (1.44 + 0.09 mm/yr) with the extra

offset and correlations agrees better with the linear trend (1.46 mm/yr) estimated by
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Langbein and Johnson for the baseline from station Holcomb to station Bird, which is in

the same general vicinity and direction as station Lepage (see Figure 8.1). The baselines to
these two station should therefore behave similarly in terms of its motion relative to
Holcomb. The apparent agreement therefore supports the existence of an extra datum

offset in the measurements to Lepage.

8.3 GPS Point Positioning

The use of the Global Position System (GPS) has grown greatly in recent years,
largely owing to the wide availability of small, low cost receivers. For an in depth
explanation of the concepts involved in GPS, see Wells et al. [1986] or Dana [1997]. In its
most basic mode of operation, referred to as the Standard Position Service, users can
obtain their position to an accuracy of only about 100 metres horizontally and about 150
metres vertically. In this mode, GPS receivers make use of the so-called C/A code pseudo-
range (measured satellite-to-receiver distance), which is obtained by timing the satellite-to-
receiver travel time of the basic C/A (coarse acquisition) code that is superimposed on the
L1 carrier frequency. The satellite-to-receiver ranges are used to solve for the receiver's
position in what is essentially known as a 3-dimensional resection problem in surveying.
This mode of positioning is called “point positioning” to distinguish it from other, more
accurate, methods based on relative or differential positioning between receivers.

Although the pseudo-range observable is capable of providing point positioning
accuracies of about 10 to 30 metres, the US Department of Defense intentionally degrades
the observable to the 100 m level for security reasons. This degradation is called Selective
Availability (S/A) and involves the introduction of systematic errors in the form of a
mathematical algorithm (called “dithering”) into the broadcast satellite ephemeris and clock.
To date only clock dithering has apparently been applied. This error propagates directly

into the signal travel time from which the pseudo-range observable is derived. However,
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because the S/A error is fairly systematic, there exist very large autocorrelations in the
pseudo-range data and thus also in the estimated positions derived from them. Here, only
the vertical position is examined with the aim of investigating the degree of autocorrelation
in the data and the effect of using the autocorrelation function to weight the point positions
when using time averaging to reduce the effects of S/A and improve the accuracy. The
analysis of the two horizontal components can be done in an analogous fashion.

The data used in this study were provided by W. Prescott of the US Geological
Survey (personal communication, 19 May 1994). They were obtained from a geodetic
quality Ashtech L-XII GPS receiver and included, for each measurement epoch, the receive
time, computed WGS-84 Cartesian coordinates of the receiver's antenna and computed
receiver clock bias. The time series of instantaneous point positions refers to station
Chabot in the south part of Oakland, California. The point positions were recorded every
30 seconds for a total of 24 hours on April 6, 1994. Plots of the variation in the horizontal
and vertical position estimates over this 24 hour period are given in Figure 8.11, and for
only the first hour in Figure 8.12. The high degree of autocorrelation at short time intervals
is readily apparent from the very systematic way in which the positions slowly vary.

As already stated, the most common method of reducing the effects of S/A is to
average the point positions over time. Generally, users average their positions over
intervals as short as 5 minutes and at most about an hour. Here, one hour averaging is
used to examine the effectiveness of this in reducing the effects of S/A. This provides for
24 independent hourly means.

For each hour, the least squares spectrum is computed. Any linear dependence
between the estimated mean and the spectral components is accounted for as described in
Section 5.5. The hour long subsets are also zero-padded to avoid any wrap around effects
in the derived autocorrelation functions (see Section 3.4). The systematic nature of S/A is
revealed as statistically significant peaks in the spectra, mainly at lower frequencies. The

independently estimated least squares spectrum for first hour of the height series is given in
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Variation in Horizontal GPS Positions about Mean
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Figure 8.11: Variations in derived horizontal (top) and vertical (bottom) GPS positions

over 24 hours at station Chabot. Variation is with respect to mean position.
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Variation in Horizontal GPS Positions about 24 hr Mean (Hour 1)
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Figure 8.12: Variations in recorded horizontal (top) and vertical (bottom) GPS positions

for the first hour at station Chabot. Variations are with respect to 24 ho