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Robustness Analysis

EXECUTIVE SUMMARY

Final Report

Described in this report are the results of the investigations undertaken by two collaborating

research groups at the University of New Brunswick and The University of Calgary under a

DSS research contract #23244-9-4198/01-SS for the Geodetic Survey Division of the Canada

Centre for Surveying. The investigations addressed the problem of geodetic network analysis

techniques, and proposed alternatives to the standard statistical analysis techniques designed to

analyse network sensitivity to gross errors and blunders.

The original aim of the investigations was to study the differences between and merits of

two such alternative techniques: the reliability technique, introduced by Baarda and

implemented by The University of Calgary group, and the geometrical strength analysis

fonnulated by the University of New Brunswick group. It was discovered at the beginning of

the investigation that these two techniques are very much complementary: that is, the weakness

of each is in the area of the strength of the other. It was decided thus to combine the two

techniques into one, which we call "robustness analysis."

Experiments with both simulated and real networks have shown that robustness analysis

works very well in depicting the strong and the weak points in the network, which have to be

judged in three independent senses. The strength/weakness of a network must be studied in

the sense of scale, shear, or local twist, each of which provides a different picture of strength.

These three indicators (primitives) cannot be combined into a single scalar indicator.

It has been concluded that robustness analysis should be carried out side-by-side with the

standard statistical analysis from which it differs fundamentally. It is recommended that the

Canadian federal specifications for horizontal geodetic networks be amended to include

pertinent prescriptions as far as desired robustness is concerned, i.e., specific robustness to be

achieved through meeting robustness tolerance limits.
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1. INTRODUCTION

In Canada, as in most other countries, geodetic networks are designed and classified on the

basis of the standard statistical approach. This approach, called in this report simply

"covariance analysis," assumes that only random, normally distributed errors are present in the

observations. This analysis is oblivious to what may happen to the network if a sizeable error,

called here an outlier or a blunder, fails to get intercepted by statistical testing petfonned during

the covariance analysis.

About ten years ago, two groups - one at the University of New Brunswick (UNB) and

the other at The University of Calgary (U of C) - independently started a quest for an

alternative approach to network design and classification. The U of C group had taken

Baarda's [1968] statistically based reliability technique and implemented it for the case of

horizontal geodetic networks [Mackenzie, 1985]. It was implemented in a program package

called CANDSN [Mepham and Krakiwsky, 1984]. The UNB group took a completely

geometrical approach to develop their "geometrical strength analysis" [Dare, 1983] based on

using strain as the deformation descriptor. This technique was incorporated in the NETAN

program developed for the Geodetic Survey Division of the Canada Centre for Surveying

[Craymer et aI., 1989].

The idea of looking at the response of geodetic networks to the presence of blunders in

observations has been on many people's minds for some time. It was responsible for the

Geodetic Survey Division letting out a research contract on 24 August 1989, administered by

DSS under sse file #055S8.23244-9-4198 and #23244-9-4198/01-55, to UNB with the U of

C as a subcontractor. The aims of this contract can be summarized as follows:

(i) to show that the network response to blunders in observations is different than its

response to random errors;

1. Introduction
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(ii) to show the differences between and relative merits of Baarda's reliability analysis

and the geometrical strength analysis;

(iii) to demonstrate how the two new techniques work with both a simulated and a real

network;

(iv) to present suggestions for updating the Canadian specifications for geodetic

horizontal networks to include the reliability/strength aspects.

It became rather obvious at the earliest stages of the investigations that while the reliability

analysis is based on rigorous statistical concepts, its treatment of the geometry of virtual

(potential) network deformation, which is needed in studying the network response, is rather

weak. Conversely, the geometrical strength analysis treats the virtual deformation quite

rigorously, while its statistical foundations are weak. Thus, rather than dealing with the two

techniques side-by-side, it was decided to combine the advantages of both into one technique

called here the "network robustness analysis."

This report, being the final report on the above cited research contract, addresses the

required issues in the following way: the three techniques that had to be studied and compared

are described in Chapters 2, 3, and 4, respectively. Since the covariance analysis is a rather

standard tool, it is presented in a more compact way than the other two techniques.

Robustness analysis is discussed in Chapter 5, together with its comparison with geometrical

strength and covariance analyses. Chapter 6 is devoted to describing how robustness analysis

is implemented on the computer within the framework of the existing NETAN program. The

required numerical examples are gathered together in Chapter 7, proposed specifications are in

Chapter 8, and our conclusions and recommendations are brought forward in Chapter 9.

Suggestions for new federal specifications are submitted as an external appendix to this report.

1. Introduction 2
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2. COVARIANCE ANALYSIS

2.1 Introduction

Throughout the "discussion in this chapter, we will consider only distance, angle, and

azimuth observations. This will simplify our discussion, but some generalizations for the

benefit of the reader are thus necessary. We frrst consider the mathematical model shown

below:

Ax =t + v, Ce , (2.1)

where A = the design matrix,

x = vector of unknown parameters,

t = vector of observations,

v = vector of residuals, and

c.e = covariance matrix of the observation.

Equation (2.1) is merely the differential form of a non-linear mathematical model. The

equation is formed by linearizing around the Taylor point x(O) with x = ~ (correction to initial

approximate parameter vector) and €. = w (misclosure vector). x can be solved using the well-

known least-squares estimation technique utilizing the nonnal equations shown below:

N~ = AtPee , (2.2)

where N = AtPeA + C~~ (Cxo is the a priori covariance matrix for the unknown

parameters; it is optional and is not considered further in our discussion), and

P 2 C-1 ( 2. th .. . f )e = aO e aoIS e a pnon vanance actor.

Before we can use the results from our estimation, we need to assess our observations and

mathematical model. This allows us to determine if we can rely on the results that we have

obtained. The assessment is made using statistical testing. The most important tests that

usually are carried out are briefly discussed below.

2. Covariance Analysis 3
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2.2 Statistical Testing of Observations

Testing of observations is done before they are used to estimate unknown parameters. The

reason for testing observations is quality control. We want to know whether the observations

that have been collected contain any gross errors. Screening the obselVations for gross errors

before they are used is supposed to ensure that the estimated unknown parameters will not be

biased.

The quantities used for testing the observations are either the observations themselves or

their residuals. In the latter case, we assume that the observations eare composed of two

parts,

where

t=~- ~ ,
~ = the estimated value of the observations,

1\
V = the estimated value of the residual of the observations.

(2.3)

Since we are testing only one observation at a time here, univariate testing is used in this

context.

There are three types of tests that can be carried out on the observations: namely, :

(a) X2 goodness of fit test,

(b) test on the variance, and

(c) test on the mean.

The fITst test determines whether the histogram of the residuals is compatible with a postulated

probability density function (PDF). The PDF that is used here is the normal distribution. This

test is important as all the other statistical tests assume that the residuals are normally

distributed. (There are, however, statistical tests that do not rely on the nonnality assumption,

known as the non-parametric test [Rao, 1973]. These are seldom used in network analysis and

will not be discussed here.)

The second test determines whether the hypothesized population variance c?- is compatible

with the assessed variance s2 and can be used only when several values have been collected for

one observable. c?- can sometimes be viewed as the design variance. If this test fails, then

2. Covariance Analysis 4



Robustness Analysis Final Report

there is a reason to believe that the observations were not collected according to the design.

The third test is designed to examine the mean of the data collected for one observable. The

comparison between the population mean OJ,) and the sample mean (1) tells us of the presence

of possible biases in the observed sample. The last two tests cannot be performed on

residuals.

For the three tests described above, there are six situations under which the tests can be

carried out These situations reflect whether the population mean Jl and the population variance

('52 are known or unknown. If Jl and/or cJl are unknown, they are estimated from the sample

mean r and the sample variance s2. It is important to know whether we are treating the

population parameters as known or unknown as this will detennine the PDF that we should use

to carry out the tests. VaniCek and Krakiwsky [1986] explain the tests described above in

greater details.

2.3 A Posteriori Testing of Observation and/or Model·

The tests use the estimated residuals ~ or the misclosure vector w' (when w' is a function

of the observation and not due to the linearization process). The residuals ~ are indicative of

the behaviour of both the observation and the mathematical model. It is generally impossible to

separate the two, therefore, the observations and the model are tested simultaneously.

There are two tests that can be conducted on ~ and w' depending on whether the variance

factor cr~ used for scaling the covariance matrix of observations is known or unknown. When

carrying out the test to detect outliers, the covariances between the residuals have to be taken

into consideration. In such a situation, the Baarda test statistic should be used or Bonferroni's

inequality employed. Both approaches take covariances into account in quite different ways.

The assumption behind the standard testing is that the observations e are normally

distributed with expected value of A~, i.e.,

HO : eE n (~; A~, Ce) (2.4)

2. Covariance Analysis 5 .
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(Any symmetrical probability distribution function with mean A~ will suffice to satisfy

conditions for unbiasness and maximum likelihood of ~ but not for testing.)

(2.5)
" A

1\2 _ V Pe v
cro - ,

V

This hypothesis is tested by the "test on the variance factor." The a posteriori variance

factor~ is computed from

where v is the number of degrees of freedom. If the a priori variance factor~ is known, then

the null hypothesis for testing is

(2.6)

One of the necessary conditions for this null hypothesis to be satisfied is that the expected

value of v equals to 0, Le., that the observations t are burdened only with random errors (with

zero-mean). Thus observations are usually again screened against gross errors/biases using

tests for outliers.

2.4 Outlier Detection in Observations

Outliers are observations that are considered statistically incompatible with the rest of the

series [VaniCek and Krakiwsky, 1986]. This incompatibility is thought to be caused by a

blunder made in the measurement or by some sort of disturbance affecting the perfonnance of

the measuring system. Outliers can be detected by examining the residuals of the observations

after the estimation process.

Because the residuals are mathematically correlated to each other, we would have to work

with a multivariate distribution function. This would make the testing procedure quite

complex. It is easier and more efficient to work with a univariate distribution. To do this we

have to standardize the residuals. Since it is assumed that all the residuals are coming from the

same population with different normal density, the standardization process is straightforward.

The standardization process is accomplished by the transformation:

2. Covariance Analysis 6
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(2.7)

The univariate tests that are available for outlier detection are shown in Table 13.5 in

Vanicek and Krakiwsky [1986]. The table shows the tests when each .ei has been taken out of

context, i.e., the question as to whether the other members of the series may also be outliers is

deliberately ignored. The tests are thus called the out-of-context tests. An in-context test

examines the ei in light of their existence as one of the members of the series. In this case, the

significance level for the test is different from that used in the out-of-context tests. The

significance level for the in-context and the out-of-context tests is related by the equation:

a ~ ~ , (2.8)

where a = out-of-context significance level,

a = in-context significance level, and

N = the number of observations.

A more detailed description of the out-of-context and the in-context testing can be found in

Vamcek and Krakiwsky [1986].

The outlier detection process plays a very important role in our robustness analysis

technique as will be shown later. As a matter of fact, there may exist observations in a network

that cannot be tested for outliers and the level of detectability varies with network geometry.

What happens if ei burdened with blunders L1ei , e.g., gross error of bias, are used in the

computation? The effect of the blunder and whether it is detectable will depend on the

geometry of the network. Figure 2.1 illustrates this point.

Figure 2.1 (a) shows a closed network of points. All the points in the network are

detennined employing redundant observations. If observation e3 is burdened with a blunder, it

either can be detected from the residual of that observation or has only a small effect on point A

as other observations are also used to compute coordinates of the point. In Figure 2.1 (b), the

2. Covariance Analysis 7
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A
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Cb)

Figure 2.1. Detectability of blunders and their effect on a horizontal network.
(a) A blunder either can be detected or has a small effect on the network.

(b) Blunder ~e3 cannot be detected and has a large effect on the network (only on point A).

2. Covariance Analysis 8
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blunder in the observation cannot be detected as there are no redundant measurements made to

point A. The effect of the blunder will be large as only the observation burdened with the

blunder was used to compute the position of A.

The effect of a blunder on the network depends on the following two circumstances:

(a) if ~ei can be detected by statistical testing, and

(b) how the network reacts to the presence of ~~'i.

Both are functions of network geometry, the observation accuracy, and the magnitude of ~ei.

When can a blunder be detected? The answer lies in Baarda's reliability theory explained in

Chapter 3.

2.5 Assessment of the Estimated Positions

Once the observations have been screened and the mathematical model examined, the

estimated parameters (positions) should be assessed. The assessment consists of the

determination of confidence regions (sometimes known as error ellipses for 2D positions or

error ellipsoids for 3D positions) for the positions. These represent the amount of trust that

one can place on the estimated positions.

The confidence region determined for the estimated position depends on the test statistic y

shown below. There are two different cases where y can be detennined, i.e., when~ is either

known or unknown. If~ is known then the test statistic used is:

where x

"t -1 "Y = (x - x) C" (x - x) ,
x

= the unknown parameters (coordinates),

. (2.9)

"x = estimate of the unknown parameters, and

C~ = covariance matrix of the estimated parameters.

The test statistic y shown above has a X2 distribution with u degrees of freedom, where u is

also the number of unknown parameters in the estimation process. If%is unknown, then the

test y is given by:

2. Covariance Analysis 9
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y=

"t -1 1\(x - x) C 1\ (x - x)x

u

Final Report

(2.10)

The test statistic shown in equation (2.10) has an F(u,v,oo) distribution (v = number of

observations minus the number of unknown parameters).

For a given significance level a, the critical value of y can be looked up from the X2 of the

F tables depending on whether~ is known or unknown. If we substitute this value for y in

equations (2.9) or (2.10), we will get au-dimensional hyperellipsoid. This hyperellipsoid can
A

be understood as a u-dimensional confidence region centred at x. Any tested value x that falls
A

within the hyperellipsoid must then be considered compatible with x on the level of probability

(I-a). Two-dimensionaLsubvectors ofx similarly fall into 2D confidence regions centred on

A
corresponding 2D subvectors of x, i.e., the points of the network. The axes and orientation of

the confidence regions can be computed by solving the eigenvalue problem for each confidence

ellipse. The equations for computing the axes and orientation of the confidence ellipse can be

found in Steeves and Fraser [1983].

There are two types of confidence regions: point confidence and relative confidence region.

The point confidence region reflects how accurately the station has been positioned with respect

to the 'datum' of the network: point confidence regions thus depend on the datum defining the

network. The relative confidence region represents the relative accuracy between the two

stations. It is not datum dependent and is most often used to define the accuracy of a network.

The confidence regions are usually computed for a probability level of 39%. Such

confidence regions are called the standard confidence regions. This probability level can be

increased by multiplying it with an expansion factor. The expansion factor is given by:

Ca(u) = ...J~{y, I-a). (2.11)

where ~(y, I-a) is the absence of the appropriate PDF corresponding to the I-a probability.

This expansion factor is multiplied with the axes of the standard confidence region to obtain the

I-a in-context confidence interval.

2. Covariance Analysis 10
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3. RELIABILITY ANALYSIS

3.1 Baarda's Reliability Theory

Before we go into detail on the theory, the concept of hypothesis testing should be

explained fITst. The role of hypothesis testing is to allow us to make a statistical decision

concerning postulated population parameters, e.g., mean Jl or variance (J2, etc., to have some

particular value. This is called the null hypothesis (Ho). For every null hypothesis, there

exists an infinite number of alternative hypotheses (HI), each of which states that the

population parameters have some other particular values.

When we perfonn hypothesis testing, there are only two possible outcomes, i.e., to accept

Ho or to reject Ho. Similarly, there are two possible outcomes for the test of the alternative

hypothesis HI. None of the hypotheses may be true, in which case the test at least should tell

us which hypothesis is better. To make a definite decision concerning Ho, we need to have an

infinite sample to work with. Since this is never available, a decision made on a finite sample

should be trusted only to a certain degree. Such a decision has attached to it only a limited.

confidence.

The probability a of rejecting Ho when in fact HO is true (Type I error) is called the

significance level. The complementary probability (I-a) is called the confidence level, and it is

the measure of confidence we have in the decision (Type I error). Likewise, a situation might

arise that HO is false and we accept it. This is called the Type II error. The probability of

making this decision is~. (l-P) is called the power of the test, and it expresses the confidence

we have in the decision made. The situation described above can be summarized in Table 3.1.

When Baarda first developed his reliability theory, he treated the blunders as unknown

parameters to be estimated, i.e., the blunders are treated as detenninistic quantities. Most of

the research work and literature dealing with outliers or blunders treat them as detenninistic

quantities that have to be estimated.

3. Reliability Analysis 11
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Table 3.1. Testing of a null hypothesis Ho against an alternative hypothesis HI
(afterVamcek and Krakiwsky [1986]).

Decision Test tells us to Test tells us to
Situation acceptHo reject Ho

Ho true Correct decision Type I error
Probability = I-a Probability =a
(confidence level) (significance level)

Ho false Type II error Correct decision

(HI true) Probability = p Probability = 1-~

(power of test)

The blunders can be estimated from the residuals obtained after a least-squares adjustment.

The relationship between the observational errors and the residuals is shown below

[Stefanovic, 1978; Kavouras, 1982]:

where
A
V

A -1
v = Q~Ce E ,

= the estimated residuals,

(3.1)

e = the true observational errors,

Q~ = the cofactor matrix of the estimated residuals, and

Ce = the covariance matrix of the observations.

The cofactor matrix and the covariance matrix of the residuals is related by~ [Mikhail, 1976].

Therefore, if cr~ is assumed known, then equation (3.1) can be rewritten as:

A -1
V=C~CtE (3.2)

where C~ is the covariance matrix of the residuals.

3.2 Effect of Blunders

Now, if we assume E to be made up of two parts consisting of a random part Er and a gross

error part (blunder) Ve, we have:

E = Er + 'Ie ,
Substituting equation (3.3) into equation (3.2), we have:

3. Reliability Analysis

(3.3)
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¢ = C~c"i (Ev + vt)

=C~ cel Er + C~ cel Vt

"v=vr+Vv,

Final Report

(3.4)

where Vr = influence of the random error on the residual,

vv = influence of the blunder on the residual.

If an observation ei is not burdened with a blunder, then Vei will be zero. On the other hand,

if observation ei is burdened with a blunder, then Vei will be non-zero. Therefore, through

testing of the residuals ~, an observation containing a blunder could be detected.

In carrying out the statistical test on our observations, we always assume that the

observations are normally distributed with mean Jl and variance 0-2. If an observation is

burdened with a blunder, then it will have a distribution with mean, say, Jl +~A, and variance

of a2. This method of modelling the blunder is called the mean shift model [Chen et al., 1987]

where the (unknown) mean shift is given by ~A,. The PDF of the observation containing a

blunder is shifted by ~A from its own PDF not burdened by a blunder. This situation is

depicted in Figure 3.1.

One of the statistical tests carried out after a least-squares adjustment is to test the estimated

reference variance~ against a hypothesized reference variance ~. as described in the previous

chapter.

There are many reasons why the test can fail and HO be rejected. Some of these reasons

can be found in Dotila [1976], or VaniCek and Krakiwsky [1986]. For our purpose, however,

we shall assume that the reason why the test fails is that blunders exist in our observations.

This is a valid assumption because blunders have an influence on ~. Since &~ is estimated

using ~, the presence of blunders will cause the distribution of test statistic y to be shifted by

A. The shift Ais also known as the non-centrality parameter [Mackenzie, 1985]. The amount

of shift can be computed from the blunders themselves, through their influence Vv. The

derivation of Ausing Vv is discussed below.

3. Reliability Analysis 13
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Figure 3.1 The central and non-central nonnal distribution (after Mackenzie [1985]).

3. Reliability Analysis 14



Robustness Analysis Final Report

3 . 3 Formulation of an Alternative Hypothesis

Under the null hypothesis, the expectation ofy' =y/v is 1, as seen from equation (2.6). In

an alternative hypothesis, the expected value of y' is not equal to 1. We can write the expected

value of y' under HI in two parts as shown below:

E[y'lHll = E[y'IRo] + V[y'J (3.5)

where Vy' is the amount by which the X2 distribution has shifted due to the presence of

blunders. Therefore,

E[ytlHll = 1 + V[y'] .

But y' = &~ I~ and substituting y into equation (3.6) we get:

V[y'] = V (&~~

=V~~

where V~ is the amount of shift of~ due to the presence of blunders

1 -1
V[y'] = cC (Vvt C~ Vv)/V ·

o
Equation (3.6) can be rewritten as:

1 -1
E[y'IHl] = 1 + cC (Vvt C~ Vv)1v

o
= 1 + AJv

where
1 -1

A= "2 VVtCt \Tv ·
°0

Since Vv = C~ct vt (equation (3.4», we can write equation (3.8) as

A. = ~ (C~ Cel vt)t Cel c~ ct vt
o

= -l vtt c-1 C A c-1 c/\ c-1 vtcC ~ v e v t ·
o

Using the indempotence property ofC~ Cel [Mikhail, 1976], we can write,

3. Reliability Analysis

(3.6)

(3.7)

(3.8)

(3.9a)

(3.9b)
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A= ~ vttci c~Ci vt .
o

If~ = 1, then equation (3.9c) is reduced to:

Final Report

(3.9c)

(3.9d)

(3.10)

Figure 3.2 shows the shift of the probability distribution function of Ho due to blunders vt in

the observations.

When formulating the reliability technique, we are not interested in the magnitude of vt
itself. What is important is to know the magnitude of the blunder that cannot be detected. To

be able to determine this we need to know A. Since V~ is unknown, however, Acannot be

computed using equation (3.9d). Instead, we can select a critical value Ao (based upon selected

ao and ~o, as shown later) to determine the magnitude of vt that cannot be detected. Equation

(3.9d) can then be rewritten as

o -1 -1 0
A.O = VO~.t Ct C~ Ct Vo~ ·

In carrying out the test for detecting blunders in our observations, we have assumed that

only one blunder at a time was present: each observation is tested in turn to see if it is

burdened with a blunder. The hypothesis set up for each observation is

Baarda called the consecutive testing of the alternative hypotheses H1i "a data snooping

strategy" [Baarda, 1968; Kok, 1984].

3.4 Redundancy ~easure

Since we are testing one observation at a time, the test hypothesis will be one dimensional

[Kok, 1984]. Therefore, we only have to deal with a univariate probability distribution.

Baarda [1968] has ascertained that in testing the residuals to detect the presence of blunders,

3. Reliability Analysis 16
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Figure 3.2 Probability distribution function of test statistic y under
Ho and HI (after Kavouras [1982]).
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(3.11)

the most sensitive test quantity is the weighted residual. If we test one observation at a time,

the weighted residual of observation ~ is given by
. * -I "VI : Vi = (Ct V)i •

The variance of the weighted residual in equation (3.11) is given by:

(3.12)

The test statistic that is used to test the hypothesis above is the standardized residual having a

standard nonna! distribution with Jl =0 and 0-2 = 1. The test statistic is thus

'Vi
*v.
I

Wi = -*­
cr.

VI

(3.13)

If 1Wil > n(l-a) then Hoi is rejected. If Hli is true, then observation ej is burdened with a

blunder. Under Hli, Wi will have a non-central standard normal distribution. The amount of

shift with respect to the central distribution is given by ~AO. This situation is depicted in

Figure 3.3. Under the null hypothesis, the expectation of Wi is zero

E[WiIHo] =0 ,

and under the alternative hypothesis, the expectation of Wi is ~Ao

E[WiIHI] = -vAo ·

(3.14)

(3.15)

The practical application of Baarda's reliability theory is to determine the magnitude of

blunders that cannot be detected on a given probability level ao when accepting a level of risk

I30 of committing a Type IT error (accepting that there is no blunder present when there is one

present). If we assume that all our observations are burdened with blunders, then we are

interested in the minimum size of blunder in each observation that can still be detected.

Therefore, having preselected ao and ~O (the selection of these two quantities will be discussed

later), "./Ao can be determined. Figure 3.3 shows how ..JAo can be computed using the formula

shown below:

3. Reliability Analysis

~Ao =~n(O,1),I-a/2 + ~n(O,l),l-P · (3.16)
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at
~-----~-..l
I VA o,.

Figure 3.3 ~Ao shows the shift of the standard normal distribution of w
when HI is true (after Kok [1984]).
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The maximum undetectable blunder (or minimum detectable blunder) can be computed using

equation (3.10). Since we are testing one observation f.j at a time, equation (3.10) can be

rewritten as:

(3.17)

In equation (3.17), the product (C~)(Cel)iiis called the redundancy number ri [Forstner, 1979;

Mackenzie, 1985]. The ri gives an insight into the 'controllability' of the observations. An

observation is said to be 'fully controlled' if all of the observational errors (random and non­

random) show up in the estimated residual [Mackenzie, 1985]. This is obvious from equation

(3.2) which can be rewritten as

A
V =r £

-1
where r = C~ Ce . Rewriting now equation (3.17), we get

. 02 -1
'VI : A.o = VO{,i (Ce)ii ri •

Rearranging equation (3.19), we arrive at

Vi : Vof,~ = A.o
1 -1

ri (C e)ii

or

(3.18)

(3.19)

'Ii (3.20a)

Since (C.e)ii = (J~i' we have

(3.20b)

VO.ei is called the internal reliability measure [Baarda, 1968]. It represents the maximum

blunder in an observation undetectable with selected ao and ~O. We note that if fi = 0, no error

can be detected by the outlier test (case requiring only the minimal number of observations

linking the point to the rest of the network). The fi = 1 case represents the other extreme when

any ~A.o multiple of crei could be recognized as an outlier.
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3 . 5 External Reliability

Another reliability measure that Baarda developed in 1968 is called the external reliability.

External reliability tells us about the effect of voti on the positions obtained through the least­

squares adjustment. External reliability, however, is not used in our method; the effect of Voei

on the result is handled in a different way_ To make our discussion more complete and to make

a comparison between our method and Baarda's method in assessing the effect of Voei , a brief

discussion on the external reliability is still given below.

In the least-squares adjustment, the unknown parameters are estimated using equation

(1.2). If we pre-multiply equation (1.2) by N-l, we get:

~ = N-l At Pt t , (3.21a)

or

~ =(At Pt A)-I At Pe t . (3.21b)

Supposing that the observation vector t is burdened by blunders vt, i.e., t' =e+ Ve and

substituting e' into equation (3.21b), we get

~t = (At Pe A)-l At Pt t, , (3.22)

where ~t are the shifted unknown parameters affected by blunders Ve. Substituting for t,
into equation (3.22), we get

~, = (At Pe A)-l At Pe (t + vt)

= (At Pt A)-l At Pt t + (At Pe A)-l At Pe Ve . (3.23)

and denoting by V~ the shift of ~ due to Ve yields

V~ = (At Pf, A)-l At Pe v~ . (3.24)

The effect of the maximum undetectable blunder V'oei on the estimated parameters can be

determined by substituting voti for vt :

'ti : VOQi = (At Pf, A)-l At Pi', VOei . (3.25)

Here, VoQi is dependent on the coordinate definition, i.e., it is datum dependent. Baarda

[1976; 1979] proposed another kind of external reliability measure:
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(3.26)

known as the relative external reliability measure.

As we shall see in the next chapter, the effect of blunders on the network·is better handled

as a virtual defonnation and thus depicted by a more appropriate technique than the 'external

reliability. '
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4. GEOMETRICAL STRENGTH ANALYSIS

In this chapter, the use of strain for the strength analysis of geodetic networks is described.

The basic concepts of strain are given followed by its application to geodetic networks, and

specifically its use as a tool for analysing the geometrical strength of networks. We also show

that changes in the network datum have only a second-order effect on strength.

4 . 1 Concept of Strain

Strain is a purely geometric approach to the analysis of the deformation of a physical body.

It is based on the theory of elasticity in mechanics where it is applied to the description of the

relative deformation of a body with respect to some initial state. Here deformation is taken to

mean the change in shape or configuration of the body.

Deformation can be classified as either homogeneous or nonhomogeneous. If the

defonnation is homogeneous, straight or parallel lines will remain as straight or parallel lines

after deformation. If, on the other hand, the deformation·is nonhomogeneous, initially straight

or parallel lines become curved or nonparallel after deformation. These deformations are

illustrated in Figure 4.1.

Undefonned state Homogeneous strain Nonhomogeneous strain

Figure 4.1 Examples of homogeneous and nonhomogeneous deformations.

4. Geometrical Strength Analysis 23



Robust Analysis Final Report

Strain induced by homogeneous deformation is called homogeneous strain and is constant

over all parts of the region of defonnation. Nonhomogeneous defonnation, on the other hand,

produces a more complicated nonhomogeneous strain field.

Defonnation and strain can also be classified as [mite or infinitesimal. Finite strain usually

describes an instantaneous deformation of a continually deforming body with respect to its

original undeformed state, i.e., cumulative strain. On the other hand, infinitesimal or

incremental strain describes the instantaneous defonnation of the current defonned state with

respect to some earlier, not necessarily undefonned, instantaneous state.

Only nonhomogeneous and infinitesimal defonnation is needed in strength analysis due to

the following considerations:

(a) the defonnation of a geodetic network is generally nonhomogeneous, and

(b) in the strength analysis of a geodetic network, the defonnation is much smaller compared

to the size of the network and we can thus use infinitesimal strain theory.

The latter allows us to take advantage of the fact that infmitesimal deformation is differentially

small in order to simplify the mathematical description of strain.

Mathematically, infinitesimal strain is defined as the rate of change (i.e., gradient or slope)

of an object's displacement field with respect to position. Given a three-dimensional (3D)

displacement field u(x,y,z)=(u,v,w)T, as a function of position x=(x,y,z)T, the strain matrix E

consists of 9 linear displacement gradients given by

au au au
ax dy dZ

[ eux euy
e

uz
]dU(x,y,z) dv av dVE = grad(u) ax = ax iJy dz = evx evy evz , (4.1)

dW aw aw e wx ewy e wz

ax dy dZ

where the derivatives are evaluated at the point of concern. These linear strains e correspond to

the rate of change of displacement in each of the three coordinate components along the three

coordinate axes. For example, euy is the rate of change or gradient of displacement in the x­

direction with respect to position in the x-direction.
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Note that the mechanical properties of the material are not involved in strain. Strain is

applicable, whatever the mechanical behaviour of the material. Note also that strains describe

only the relative displacement of points so that rigid body translations do not affect strain. This

will be discussed in more detail later in this chapter.

4.2 Deformation Primitives

The strain matrix contains all of. the. strain infonnation about the displacement field. It is

not easily interpreted, however. Various scalar parameters can be derived from the strain

matrix in order to make the interpretation of strain more convenient and illustrative. We call

these parameters defonnation primitives.

The strain matrix E can be decomposed into its symmetric S and anti-symmetric A parts;

i.e.,

E = S+A , (4.2)

where
1 1

e ux ¥euy+evx) ¥euz+ewx)

[ E
ux Euy

E
uz

] 1 1
S = Evx Evy Evz = 2<euy+evx) e vy 2<evz+ewy) (4.3)

Ewx Ewy Ewz 1 1
2<euz+ewx) 2<eyz+ewy) ewz

0
1 1

0 -COz
roy ]

-¥euy-eyx) ¥euz-ewx)

1 1A = [ W z 0 -~x = ¥euy-eyx) 0 -Z(evz-ewy) (4.4)

-COy ffi x 1 1
0-2(euz-ewx) Z(evz-ewy)

The symmetric part is often referred to as the symmetric strain tensor.

The symmetric strain tensor S describes the expansion and contraction as well as the

shearing deformation at a point. The strain tensor is usually parameterized in terms of the so­

called strain ellipse or ellipsoid in the same manner that error ellipses and ellipsoids are

computed from covariance matrices, except that no square roots of the semi-axis lengths are

taken. The principal strains (A 1, A,2, A,3) are the eigenvalues of the strain tensor and the
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eigenvectors are the directions of the principal axes. Negative principal strains indicate

contraction and positive principal strains expansion.

The anti-symmetric strain matrix A describes the twisting defonnation at a point. The

quantities OJ are called average differential rotations and describe the twisting about each of the

three coordinate axes at a point. Note that in the two-dimensional case there is only a twist COz

about the local z-axis (i.e., in the x-y horizontal plane).

More convenient scalar deformation primitives for strength analysis can also be derived

from the strain matrix (see Schneider [1982]). Dilation a describes the average extension or

contraction at a point and is defmed as the average of the principal strains; e.g., for 3D

(4.5)

Note that the sum of principal strains is equivalent to the trace of the symmetric strain tensor

which is equal to the trace of the strain matrix. Total strain Ais a similar quantity, defined as

the geometric mean of the principal strains [Dare, 1983]; i.e.,

(4.6)

Shear strain can be classified as either pure shear or simple shear. Pure shear 't

deforms a square into a rectangle so that separation between lines changes. It is defined by

[Schneider, 1982]

1 1 (aU aV)'txy = -'tyx = 2" (eux - evy) = 2" ax - ay ,

'txz = -'tzx = i(eux-ewz) = i(~~ - aa:) ,

(4.7)

(4.8)

(4.9)'tyz = -'tzy = i (evz - ewy) =i(~; -aa;}
Simple shear u deforms a rectangle into a rhombus so that angles between lines change. It is

defined as [Schneider, 1982]
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1 1 (aU aV)
'Uxy = -'Uyx = 2" (euy + evx) = 2" ay + ax '

1 1 (dU aw)
U xz = -Uzx = 2 (euz + ew0 = 2: dz + dX '

1 1 (dV aW)
'Uzz = -'Uzy = 2" (evy +ewz) = 2" dY + dZ ·
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(4.10)

(4.11)

(4.12)

Neither type of shear produces any rotation. These two types of shear are illustrated in Figure

4.2. Another type of shear, total shear y, is the geometric mean of the components of pure and

simple shear; Le.,

'Yxy = "" 'txy2
+ 'Ux/ '

'Yxz = "" 'txz2
+ 'Uxz2

,

'Yyz = "" 'tyz2 + 'Uyz2
.

(4.13)

(4.14)

(4.15)

The principal axes of the strain tensor defme the directions in which no shear takes place. The

directions of maximum shear are at 45° to the principal axes of the strain ellipse/ellipsoid. The

magnitude of shear can also be detennined indirectly from the difference of the principal strains

(lengths of the principal axes of the strain ellipse/ellipsoid) [Schneider, 1982].

x
x

A~
J~

~--------I

I ,;"'- --,
I r" I
I I I
I I I
I I ,.,-,1
I ~,.,-"'" "--
I ~ ...... y

..... y
Pure shear Simple shear

Figure 4.2 Pure and simple shear. Solid lines are the undefonned state
and broken lines are the defonned state.
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Note that the symmetric strain tensor S can be represented in tenns of dilation, pure shear,

and simple shear. Using the above definitions, we find that

[

cr+txy+txz u xy u xz ]
S = u yx a+txy+'txz u yz ·

U zx u zy cr+'txy+txz

(4.16)

Although the expressions for the various deformation primitives have been developed in

3D, previous investigations by Craymer et at. [1987] have found that only 2D primitives have

any practical meaning in the context of geodetic networks. The problem is that geodetic

networks are inherently only 2D in nature since they lie on the surface of the Earth whose

variations in height are much smaller than those in the horizontal dimension. When two points

have very nearly the same height (a common occurrence), the displacement field gradients with

respect to height can become extremely large or even discontinuous, resulting in artificially

large and misleading results.

The deformation can be displayed in a variety of ways (see Thapa [1980], Schneider

[1982], Dare [1983], and Craymer [1987]). In network strength applications, the only scalar

primitives needed are differential rotation, dilation, and total shear. These scalar defonnation

primitives are most conveniently displayed using either 3D surfaces or contour plots. Only the

latter is currently supported in the NETAN software which implements this analysis.

4.3 Virtual Deformation of Geodetic Networks

The concept of strain can be readily applied to the analysis of geodetic networks by

considering the network to be a structure in itself. That is, stations are held together by the

interconnecting observations as a building is held together by its beams. In this analogy,

stations are considered to be the joints and observations are the beams and brackets. Distance

observations can be thought of as beams of rigid length whose orientation in space is not fIXed.

Angles can be considered as brackets which fIX the relative orientation (angles) between beams

of arbitrary length. Azimuths can be thought of as brackets that fix the orientation of a beam of
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arbitrary length with respect to the foundation (which acts as the datum definition). We have

found that using such an analogy helps in the interpretation of the strain parameters.

In practice, the displacement field over a structure is never known as a continuous function

of the position of points on the body. The displacements are known only for a discrete set of

points describing the structure. Only a discrete displacement field can therefore be obtained

which approximates the actual continuous displacement field.

For the strain analysis of geodetic networks, the displacements are of a virtual nature.

They represent changes to the coordinates of the points in the network that may result from a

variety of changes (perturbations) of the network. Some of these are:

• changes in observation values,

• changes in observation weights,

• deletion or addition of observations,

• deletion or addition of points,

• changes in network constraints.

The virtual displacement field is the set of coordinate changes for all points in the network.

Only virtual displacements due to changes of observation values are needed in strength

analysis.

Given a local displacement field ~ around a point, the strain can be easily determined from

the displacement gradient evaluated at the point. For geodetic networks, we can define the

"local displacement field" at a point to consist of displacements of either all interconnected

points (i.e., all points connected by obselVations to the point of interest) or all stations within a

specified radius of the point of interest. The virtual displacements (i.e., changes in

coordinates) of all points within the local displacement field can then be approximated by a

simple surface such as a plane or low-degree algebraic surface (surface described by a low­

degree algebraic polynomial). In our experience, we have found a plane to be the most robust

approximation of the local displacement field at each point. Higher-order algebraic

polynomials are not suitable for such applications since they tend to produce spurious gradients
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when the points are not regularly distributed in space (i.e., they tend to 'fall through' areas

without stations).

The gradients of the local displacement field are evaluated separately for each of the

coordinate components. A separate local displacement field is detennined for each coordinate

component and the gradients along each of the coordinate axes are evaluated to· give the

components of the strain matrix. Fitting a plane surface to each displacement field results in a

very simple detennination of the strain; the strain components are just the slopes of the planes

along each of the coordinate axes.

For the 2D case, the local displacement field components u and v are approximated by

u = ao + al x + a2 Y,

v = bO + bI x + b2 Y,

(4.17)

(4.18)

where x and y are the coordinate components of the points in the local displacement field, and

the a's and b's are the coefficients defining the planes. For numerical stability, these

coordinates are expressed relative to the point of interest. Solving for the coefficients in both

sets of equations results in

(4.19)

(4.20)

where N=ATA and A=[l x y] with 1 being a column of ones. The strain elements are then

evx = b1, evy = b2·

(4.21)

(4.22)

--Letting N denote the reduced normal equation matrix with ao or bO eliminated, the elements of

the strain matrix can be expressed together in vector form as
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e - eyX - N-1 A Tv - ,
evy

where the local displacement field vector is ordered as liT=(uT, vT).

4 . 4 Strength Analysis Using Strain

Final Report

(4.23)

The use of strain to analyse the strength of a geodetic network was fIrst proposed by

Vamcek et ale [1981] and later developed by Dare [1983]. Rather than describing the ability of

a network to resist the propagation and accumulation of random errors, the strain approach is

based on the ability to resist the propagation and accumulation of systematic errors or blunders

(Le., changes of a non-random nature).

The basic approach is to perform a series of separate strain analyses by individually

changing the observation values. Each such perturbation produces a new displacement field

and thus strain at each point. The most realistic results were obtained when changing each

observation by its standard deviation [Dare, 1983]. A measure of strength is obtained by

assuming the network is only as strong as its weakest link. The weakest link corresponds to

the largest strain parameter at each station from the entire series of strain solutions for all

observation perturbations.

With this technique, a virtual displacement field must be generated for every observation in

the network.. Although this may seem like a daunting task, sequential estimation methods can

be used to advantage here (see Craymer et al. [1989]). The displacement field l) in response to

a change of an observation can then be given directly in terms of the perturbed observation

vector ~I, which contains only one non-zero element equal to the standard deviation of the

observation; i.e.. ,

~ = -N-1 AT P M = T ~l , (4.. 24)

where A is the design matrix, P is the weight matrix of the observations and N = AT P A is

the normal equation matrix. Because only one observation is changed at a time, only one
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column of the normal equation matrix is needed to evaluate the displacement field if the

observations are independently weighted. Since the strain elements are linear functions of the

displacements (see eqn. (4.23)), we can write the following system of linear equations for each

change to an observation:

e = Q l) = Q T ~I = R ~I . (4.25)

We are now interested only in the largest defonnations at each point as measured by the

deformation primitives: dilation a, total shear y, and differential rotation 0) (cf. eqns. (4.5),

(4.13) to (4.15) and (4.4)). New deformation primitives are computed one at a time for a

change in each observation by its standard deviation. Only the largest primitives (in absolute

value) at each point are retained as a measure of the weakest link. These maximum values

(denoted by O"max, 'Ymax, and COmax) at each point in the network describe the network strength

and are referred to as strength in scale, strength in shear, and strength in rotation (twist),

respectively. They can be displayed as contour plots or 3D surface plots. Only the fonner is

currently supported in the NETAN program [Craymer et al., 1988; 1989].

4 .5 Datum Independence of Strength

The effect of the coordinate system or datum definition on the computed strain parameters

is an important issue in the strength analysis of networks. Datum is taken here to mean the

defmition of the origin and orientation of the coordinate system as well as the scale. The origin

is usually defined by specifying fixed or heavily weighted coordinates for one or several points

in the network. The orientation is often defined using weighted observations such as azimuths

or observed position differences between points. The scale is generally defined using weighted

distances Of, again, position difference observations. Two or more weighted position

observations can also be used to defme datum orientation and scale.

Ideally the strength of a network should not depend on the choice of a datum so that

different people analysing the same network, but using different datums, will get the same

strength parameters. It is shown here that rotations and scale changes have only a very small
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and negligible effect on the strength parameters and that translations of the datum origin have

no effect at all. The effects of translations, rotations, and scale changes on strength parameters

will be evaluated in tenns of strain parameters only, strength being just the largest strain

parameter at each station resulting from a series of virtual displacement fields.

It is important to bear in mind that only one datum definition is used in a single strength

analysis. The virtual displacement fields generated for the strength analysis are due only to

changes in the network observations ('blunders') and not to changes in the datum. The

question is whether a displacement field generated by such a 'blunder' gives the same strain as

another displacement field also generated by the same 'blunder' but using a different datum. In

practice, the differences in datums are likely to be very small; say, less than a degree in the

orientation of the coordinate axes, and a few hundred parts per million in scale.

Translations of Datum Origin

Differences in the datum origin between different strain (or strength) solutions completely

cancel in the detennination of the displacement field. That is, the displacement fields for both

solutions are identical even though they may be based on datums with different origins.

This can be proven very easily by considering one strain solution where Xl are the original

coordinates of points in the local displacement field and X2 are the coordinates after the network

has been perturbed by a single blunder. The local displacement field 8 is then

(4.26)

Consider now a second strain solution using a different datum origin which is offset from that

for the fIrst solution by a translation~. For this solution, the original coordinates Xl* and

those X2* after perturbation by the same blunder can be expressed in terms of the coordinates

for the frrst solution as

Xl* = Xl + ~x ,

X2* = X2 + ~x .

The displacement field 5* for this second solution is then
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(4.27)

(4.28)

33



Robust Analysis

t* * * ~u = x2 - Xl = x2 - xl = u,
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(4.29)

which is identical to that for the frrst solution. Any translation of the datum origin therefore

cancels in the virtual displacement field. Since the virtual displacement fields are identical in

both strain solutions, the strain and strength parameters also will be identical. Strain and

strength parameters are therefore invariant to translations of the datum origin.

It is important to point out here that strain is also invariant to displacements resulting from

the translation of all points. in a network.. The 2D.displacement fields in this case will have

constant values for both the u and v components at all stations (Le., they will be horizontal

planes). The gradients (strain) of these displacement fields will be zero since a horizontal plane

will have zero slope. This is the reason that strain is preferred in studies of crustal motion

where it is not known whether the point fixed in a previous adjustment has moved.

Rotations of Datum Coordinate Axes

A change in the orientation of the coordinate axes defining the datum in a strain (or

strength) analysis results in only a very small and negligible effect on the resulting strain and

strength parameters. Given the same displacement field l) for the fIrst strain solution as above

(generated by a blunder), the strain matrix E is defmed by

E = grad(l)). (4.30)

Consider a second solution where the coordinate system has been rotated by an arbitrary

rotation matrix R. The new coordinates before and after perturbation by the same blunder are,

respectively,

Xl * = R Xl ,

X2* = R x2 .

The displacement field l)* for this second solution is then

l)* = X2*-XI* = RX2- Rxl = R~.

(4.31)

(4.32)

(4.33)

Note that for a small angle of rotation, the term R l) is only a second-order effect. The

corresponding strain matrix E* is
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E* = grad(li*) = R grad(li) = R E .
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(4.34)

If the rotation angle ~a is small, the rotation matrix for a single rotation about, e.g., the z-

axis can be simplified to

R Z [ -~a ~6a ?] = 1+[ -~a ~ga g] = I + ~R .

The strain matrix in this new datum is then

E* = R E ~ E + ~R E = E + ~E .

(4.35)

(4.36)

The effect of a change in datum orientation is therefore ~E=~R E. For strength analyses of

geodetic networks, the changes to this will result in only a very small effect which will be

negligible in all practical cases.

A worst case effect can be estimated by considering a solution with very large strains of

about e=lxlQ-4 (100 ppm). If the datum is changed by a rotation of the coordinate system by

a large amount, say ~a=lxl0-2 radians (over half a degree), the change in -the strain matrix

from the fITst solution is only ~a·e=lxl0-6(1 ppm). In a strength analysis, the strain elements

are unlikely to exceed 50 ppm in which case a rotation of over 10 will be required to produce a

1 ppm effect on strain. In practice, the orientation of the network datum will generally be

known to much better than 1 degree accuracy. These estimates have been verified using

numerical tests.

Changes of Datum Scale

The effect on strain (and strength) parameters due to changes in datum scale can be

determined in a similar manner. In this case, the strain solutions before and after a change in

scale of ~s results in the following coordinates

Xl* = (1 + ~s) Xl,

x2* = (1 + ~s) x2 .

The displacement field l)* for this second solution is then

l)* = X2* -Xl* = (1 +~s) l).

4. Geometrical Strength Analysis
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and the corresponding strain matrix E* is

E* = grad(~*) = (l+~s)grad(~) = (1+~s)E = E-~sE. (4.40)

Note that ~s l)', and thus ~s E, is again only a second-order effect

A worst case effect can also be estimated by again considering a solution with very large

strains of about e=lxl0-4 (100 ppm). If the datum is changed in scale by an extremely large

amount, say ~s=lx1o-2 (10 000 ppm), the change in the strain matrix from the frrst solution is

only ~s·e=lxlQ-6 (1 ppm). In a strength analysis, the strain elements are unlikely to exceed

50 ppm in which case a scale change of over 20 000 ppm will be required to produce a 1 ppm

effect on strain. In practice, the orientation of the network datum will generally be known to

much better than 10 ppm accuracy which would result in scale effects of only 0.001 ppm for

this example. These estimates have been verified using numerical tests.
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5. ROBUSTNESS ANALYSIS

5 .1 Merging Reliability and Geometrical Strength Analysis

In the 20 plus years since Baarda [1968] proposed the concept of reliability analysis, the

technique has found, albeit quite slowly, many proponents and followers. Based on a rigorous

statistical foundation, the technique offers an alternative tool for analysing networks of various

kinds, e.g., geodetic, photogrammetric , and those for engineering surveys. The only problem

with reliability analysis is that the interpretation of its results, particularly those pertaining to

positions as opposed to observations, is rather difficult. We can quantify the maximum

expected observation residual that can escape purging as an outlier (bl~nder) by the standard

statistical test for outliers. What we cannot learn from the analysis is just how much damage

(distortion) such an undetected error (possible blunder) can cause to the network. On the other

hand, there is a global indicator of 'external reliability' (equation (3.26)) provided in Baarda's

technique, but this is far too coarse a measure to be of much real use. What is really needed is

a much finer measure, commensurate in its fineness with the distinguishing power of the

internal reliability, that would pinpoint areas, or even better, points, where one can expect the

damage to be significant and other points where the damage should be expected to be

insignificant. The individual indicators of 'external reliability' (equation (3.25)) associated

with individual points provide a fine enough measure but they are datum dependent and there

are far too many of them to be practical.

Some 10 years ago, work on one such measure started at UNB and culminated in 1983

with Dare's [1983] formulation of 'geometrical strength analysis' (GSA). This technique

approaches the problem of network deformability or lack of it, i.e., strength, from a purely

geometrical point of view. The question GSA answers is: How could a geodetic network

deform in the worst case if the observations were burdened with some undetected non-random

errors? The answer includes a somewhat unexpected complication - there does not exist one
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single scalar measure of such a deformation, but three independent measures. In Chapter 4,

these three measures are called the 'defonnation primitives.' They are the pure strain (scale),

the total shear (shape), and the differential rotation (twist). Every one of these primitives

shows one independent aspect of network deformation.

In Dare's formulation of GSA and the later application program NETAN [Craymer et al.,

1988], little attention was paid to possible values of observation errors that could cause the

virtual deformation analysed by.GSA. Values equal to the standard deviations of individual

observations were used to generate the studied deformation. GSA thus starts where Baarda's

reliability analysis ends. This became obvious to us at the outset of this contract, and we

decided to put these two techniques together to obtain a full image of the strength of a geodetic

network. All that is required to 'marry' the two techniques is to take the maximum errors

(blunder) undetectable by the standard statistical tests for outliers as estimated by the reliability

analysis and use them as values that can cause the virtual deformation of the network in GSA.

The result is that equation (4.25), which generates the vector of displacement gradients

(strains), changes to

where

e = ~AoRa* ,

* (Ji
0'. = :r- .

1 -vri

(5.1)

(5.2)

In other words, this equation is created by substituting Vei from equation (3.2Gb) for (Ji in

equation (4.25). The subsequent treatment of e remains the same as in GSA.

5 . 2 Properties of Robustness Analysis

The resulting analysis, which combines the statistical aspects of Baarda's theory with the

geometrical aspects of GSA, gives an answer to the proper question that one must ask if

analysing the strength of a network; namely, What would be the worst possible deformation of

a network whose observations had been tested for outliers (and detected outliers purged) on a
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specific confidence level I-no? The analysis - we call it 'network robustness analysis,' to

reflect contemporary statistical terminology where robustness means insensitivity to blunders

- gives a picture of the network's potential worst deformation in terms of the three

independent deformation primitives. Clearly, a high value of one of the primitives associated

with a point, or a region, shows a weakness (in resistance to deformation) of the network at

that point, or region, in the sense of that particular primitive (aspect). Low values, on the other

hand, are indicative of good resistance to deformation, i.e., indicative of strength.

For the purpose of designing a network that would meet specific strength criteria, it would

be necessary to fonnulate meaningful tolerance limits for admissible weaknesses in the three

independent primitives: scale, shear, and twist. In other words, for specifications dealing with

a design of desirably strong networks, it will be necessary to come up with a specific value of

AO, which scales the three indicators of strength. (As we see from equation (5.1), ~Ao is a

common scale factor to all the results obtained from the robustness analysis.) In Chapter 3, it

was shown that Ao is a function of aO, the significance level selected for testing adjusted

observations for outliers, and PO, the probability of Type II error in the testing. While 0{) is

selected beforehand, prior to the outlier testing, Po is free but should be specified for the

purpose of choosing tolerance limits in the robustness specifications.

Two types of singularities can appear in a network subjected to robustness analysis: a

geometrical singularity, and a singularity due to no redundancy. The fIrst singularity is caused

by specific geometrical configurations when the point to be analysed is either connected only to

one other point, or when it is colinear with all the connected points.. This type of singularity

does not have anything to do with the strength of the network at that point; strength simply

cannot be (reliably or at all) detennined at that point In the enhanced NETAN (see Chapter 6),

strength indicators at these singular points are simply not plotted at alL

The other type of singularity occurs at points attached to the network by observation(s)

whose redundancy number equals zero, i.e., at points whose position is derived from the

minimal number of observations with no redundancy (e.. g., two intersecting directions).
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Because such observations are not checked at all by the test for outliers, there is no guarantee

that such observations are not burdened with huge blunders and the point in question

represents a point of infinite weakness - zero strength - in the network. The strength

indicators at these points show very large values.

Finally, we wish to note here that robustness analysis is datum independent The proof for

the independence was shown in the previous chapter for the geometrical strength analysis and it

fully applies here as well. The consequence of this property is that any choice of a minimally

constrained adjustment model will yield the same results as far as network strength is

concerned. It must be emphasized, however, that a network adjusted with some weighted

constraints, e.g., a network for which positions of some points, together with their errors, are

known a priori, cannot be viewed in the same light. Weighted constraints become an

indivisible part of the network itself as much as the observations are, and the strength of such a

network is as much affected by the constraints (and their weights) as it is by the observations

(and their weights). The fact that the weighted constrains may also supply a datum for the

adjustment is only incidental.

5 .3 Comparison of Robustness and Geometrical Strength Analyses

To demonstrate the difference between the GSA and the robustness analysis, results of

both analyses applied to the HOACS 3D synthetic network, are shown here. For a full

discussion of the HOACS 3D network and its robustness, the reader is referred to Chapter 7 ..

Figures 5.1 and 5.2 show strength in scale as estimated by both techniques .. The results

are somewhat similar insofar as the extreme values are concerned: the maxima (in absolute

value) are located at the same points, the northeast and the southwest corners, i.e .. , the

weaknesses of the network have been pinpointed by both techniques the same way. On the

other hand, the details are quite different and so are the magnitudes, as one should expect..
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Figures 5.3 and 5.4 show strength in shear. Once again, the point of extreme weakness is

placed at the easternmost part of the network equally by both techniques. In the other aspects,

the two plots are different

Figures 5.5 and 5.6 display strength in twist. This time even the locations of extreme

weaknesses are different; so much so that the point at the westernmost end of the network is at

once identified as being the geometrically strongest, yet showing the least robustness.

Interestingly, all the values of robustness in twist are negative, while geometrical strength

shows both positive and negative values.

5 . 4 Comparison of Robustness and Covariance Analyses

In Chapter 2, we described what is generally understood by covariance analysis: the

conglomerate of statistical tests based on the covariance matrices of the observations and of the

adjusted positions (coordinates). This traditional analysis is based solely on statistical

considerations and is concerned only with Type I error, random errors and their effect on the

network. The effect is normally quantified by absolute and relative confidence regions and

various derived quantities such as relative accuracies, whose purpose is to show just how

much the network may be distorted (deformed) by the presence of errors presumed random.

In many countries, including Canada, this kind of analysis is the only one ever applied

to geodetic networks. It forms the basis for Canadian federal specifications for horizontal

control networks. The information contained in the covariance matrix of estimated positions is

the only infonnation about the 'strength of the network.' The effect of possible blunders that

may escape detection by appropriate statistical tests is not considered and neither is the effect of

geometrical weaknesses, at least not directly. The test that comes closest to a consideration of a

blunder (but not its effect) is the one for outlier detection, where the result is assumed to be a

set of blunderless observations. In brief, the covariance analysis deals with the second

moments of the PDFs of observations and estimated parameters.
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Robustness analysis looks at the network from a different point of view, assuming that

some blunders inevitably escape detection and make their presence felt by defonning the

network. Hence it uses statistical tools also but only to estimate the magnitudes of potential

undetectable blunders, i.e., it deals with frrst-order moments of the PDFs of observations. The

rest of the analysis is purely detenninistic (geometrical) and has no statistical connotation

whatever. The picture of the network presented by the robustness analysis is what one should

expect the strength to be: the ability to resist defonnation, and should be understood as such;

the robustness analysis is a strength analysis.

Clearly, the two analyses present quite different pictures of the analysed network. In

some parts of the network, the messages from both analyses may be similar; in other parts,

they may be very different, even contradictory. As an example, let us take the strength

singularity caused by the lack of redundancy. In this case, the point in question will have zero

strength while both absolute and relative confidence regions may not show any irregularity at

all. Quite the contrary; if the single observation has a very low standard deviation, the pertinent

relative confidence region will be very small, indicating a good network design.

To show the difference between the infonnation contained in the results of either

analysis, Figure 5.7 is included here. This figure is a plot of some relative confidence ellipses

for the HOACS 3D network (for a full discussion of this network, see Chapter 7). This plot

should be compared with Figures 5.2, 5.4, and 5.6 to see that the information content is quite

different. One would be hard pressed to find any similarities between Figure 5.7 and any of

the other three figures.

In some countries, e.g., Switzerland and Germany, Baarda's reliability analysis is used

side-by-side with the standard covariance analysis. Robustness analysis should replace

(complete) the reliability approach as a tool for analysing networks, side-by-side with the

standard covariance analysis. As such, robustness analysis should make its way into network

specifications to be used as a tool for network design, classification, and analysis.
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6. NETAN ENHANCEMENTS

6.1 Introduction

In this chapter, we discuss the incorporation of robustness analysis into the original

NETAN software developed by Craymer et al. [1988; 1989]. Only a general description of the

changes will be given. More details can be found in the source code.

The first modification was to replace the use of total strain with dilation to represent

strength in scale. Total strain is computed from the square root of the. sum of squares of the

principal strains (eigenvalues) of the symmetric strain tensor. This quantity is a geometric

mean and reflects only the absolute values of the principal strains. Negative changes in scale

(i.e., contractions) can never be represented by this quantity. Dilation, on the other hand, is

simply the sum of the principal strains (or the diagonal elements of the symmetric strain tensor)

which accounts for the sign of the principal strains. The strength in scale based on this

quantity can therefore represent both extension in scale (positive dilation) as well as contraction

in scale (negative dilation).

The selection of the largest strain primitives to represent the strength parameters at each

point in the network has also been changed. In the former version, the sign of the strain

primitive was taken into account when searching for the largest value at each station. This

resulted in large negative values being ignored in favour of small positive values. In the

current version, this problem has been corrected by selecting the largest absolute value of the

strain primitives representing the strength at each point.

The most significant change to NETAN involved the incorporation of robustness analysis.

This necessitated computing the standard deviations of all residuals within NETAN since the

GHOST software uses only Pope's approximation. Because these approximate values are

identical for observations with the same standard deviation, they were of no use for

detennining the internal reliability; the redundancy numbers would (incorrectly) be the same for
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all observations with the same a priori standard deviation. Although the internal reliability

results (Le., the maximum undetectable error for each observation) are not presently included

in the strength output, primarily because of the volume of information, this can be added in a

later version if deemed necessary.

The practical implementation of robustness analysis required us to identify observations·

which are used to uniquely detennine points in the network. For example, two intersecting

directions to a point, two intersecting distances, or a distance and direction all provide only a·

unique detennination of the relative position of a point. There is zero redundancy in these

cases, and the maximum undetectable error is in theory infinite. Such observations are

currently identified in the output listing and omitted from the strength computations for the

purposes of this report. It is recommended, however, that this be changed in the next version

of NETAN by assigning a specific value representing a very large number (say, 0.33E33) to

the strength parameters at these stations. These points would then show up as very large peaks

in the contour plots. Currently, these points are assigned zero strains and omitted from the

plots.

A similar problem can also arise when a single observation is used to define the network

datum. Examples are a single azimuth observation defining the network orientation or a single

distance defining the network scale. A single position difference observation without any

azimuths or distances defines both, azimuth and scale. Large maximum undetectable errors

result in these cases, which would overwhelm the strength results. Therefore these

observations have also been omitted from the strength analysis for the purposes of this report.

Currently, a tolerance limit of 0.001 for the redundancy number is used to detect such cases.

Observations with redundancy numbers smaller than this will be identified in the output listing

and omitted from the strength analysis. We recommend, however, that the software be

changed to use the actual (large) maximum undetectable errors in the strength computations so

that these points will show up as very large peaks in the contour plots of the strength

parameters.
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A more fundamental problem with the strength (and strain) computation occurs when there

is only one unique observation tie to a station. For example, a direction and distance both

along the same line. Such cases represent geometric singularities in the detennination of strain

since it will not be possible to fit a plane surface to just two points and no strain can therefore

be computed. These strength· and robustness parameters at points with such geometric.

singularities are currently assigned zero values. It is recommended instead to flag these points

using a specific value representing an undefined quantity (say, O.33E33) in the next version of

NETAN.

Geometric ill-conditioning or near-singularities can also arise when the observation ties to a

station are near collinear. The fitting of a plane to nearly collinear lines will be very ill­

conditioned and may result in spuriously large strain elements. An example of this is shown

for the real network analysed in Chapter 7. Presently NETAN does not identify such

geometric ill-conditioning. One possibility may be to simply check the detenninant of the

nonnal equation matrix for the surface fitting solution. Small values would indicate geometric

ill-conditioning. An alternative and more general approach may be to estimate standard

deviations for the strain elements and strength parameters and to peIfonn some elementary

statistical tests for significance. It is strongly recommended to investigate these and other

methods of identifying and dealing with such geometric ill-conditioning.

External reliability is not computed since the robustness analysis of the internal reliability

provides a better and more detailed picture of the strength (deformation) of the network.

Although this could be incorporated if desired, it would be very time consuming (of the same

order as the robustness analysis). Nevertheless, external reliability may provide a means of

providing strength estimates at points where there are geometric singularities or ill­

conditioning.
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The incorporation of robustness analysis into the NETAN software resulted in a new

"Strength Analysis Option" menu for selecting the type of strength analysis to be performed;

either geometrical strength or robustness analysis (see Figure 6.1). The geometrical strength

analysis uses the observation standard deviations to perturb the network as in the original

version of NETAN. The robustness analysis perturbs the network using the internal reliability

measure, Le., the maximum undetectable error for each observation. This menu is presented

immediately after selecting the "Strength Analysis" option from the main menu.

Strength Analysis Options

0) Robustness analysis
1) Geometrical strength analysis

Select option [0]:

Figure 6.1 "Strength Analysis Options" menu.

In addition to the prompts already described in Craymer et al. [1988], selection of the

"robustness analysis" option also presents an additional prompt to enter the non-centrality

parameter for the internal reliability computations. The following prompt is used to list the

acceptable non-centrality values together with their associated levels of significance and power

of the test:

Non-central ity parameters:

Significance Power of the Test (%)
Level (X) 99.0 95.0 90.0 85.0 80.0
- ... _-------~- --~-~----~--------------~---~-

a. 1 5.60 4.94 4.58 4.34 4.14
1 .0 4.90 4.22 3.86 3.62 3.·42
5.0 4.29 3.61 3.24 3.00 2.80

Enter non-central ity parameter:
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Finally, the output listing for the strength analysis has also been augmented with additional

infonnation pertinent to the robustness analysis. Added to the original strength output listing is

a list of the omitted observations which uniquely detennine points or uniquely define the

network datum.

6. NETAN Enhancements 54



Robustness Analysis Final Report

7. NUMERICAL EXAMPLES

7 . 1 Introduction

In this chapter, examples of robustness analysis are given for both simulated and real three­

dimensional (3D) networks, each with a variety of different types of geodetic observations.

including azimuths, directions, distances, 3D position observations, and 3D position difference

observations.

The plots of the robustness results presented here have been generated in two ways. The

plots of observation ties were created using NETAN. Hard copies were made from screen

dumps to a Tektronix 4693D Color Image Printer using a thermal wax printing process. Plots

of the robustness in rotation, shear, and scale were generated using the CARIS software

system only for the purposes of this report A temporary data fue containing the infonnation to

be plotted was generated by NETAN for input to CARIS. CARIS allowed us to include on the

contour plots the robustness values at each point in the network. NETAN does not display this

infoImation on the plot but instead lists station and observation infonnation interactively when

the user graphically selects a point or observation tie.

7.2 Simulated Network HOACS

A simulated network, called HOACS, was obtained from the Canadian Geodetic Survey.

This test network was originally created by the U.S. National Geodetic Survey for testing their

own network adjustment software and is also used by the Canadian Geodetic Survey to test

their 3D adjustment software GHOST. The network consists of a variety of geodetic

observations including:

• 11 free stations (none explicitly fixed)

• 3 azimuth observations with 1 second standard deviations

• 77 direction observations with 0.7 second standard deviations
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• 6 distance observations with 2 ppm standard deviations

• 8 three-dimensional position observations with 10 cm standard deviations (i.e., 24

coordinate observations)

• 3 three-dimensional position difference observations with 5 mm standard deviations

(i.e., 9 coordinate difference observations)

• 3 three-dimensional position difference observations with 1 em standard deviations

(i.e., 9 coordinate difference observations)

Figures 7.1 to 7.5 illustrate the locations of the stations and the different types of observations.

Table 7.2 gives a listing of the input GHOST data fue for this network.

The results from the NETAN robustness analysis are displayed in tenns of robustness in

rotation (local twisting), robustness in shear (local changes in configuration or shape), and

robustness in scale in Figures 7.6, 7.7, and 7.8, respectively. The NETAN output listing for

this analysis is given in Table 7.3. These robustness results are all based on cxo=5% and

Po=5% which gives a non-centrality parameter of ~Ao=3.61 (the standardized value of

maximum undetectable error). Different no and ~o result in a different "./Ao which only scales

the magnitude of the strength parameters by the ratio of the non-centrality parameters. The

plots are otherwise identical.

The results indicate that the perimeter of the network is relatively weaker than the middle

since the largest values for rotation, shear, and scale are all located on the edges of the

network. No points uniquely determined by a minimum number of observations are present.

The datum orientation and scale are defined by a multitude of observations. Because of the

ideal geometry of this network, all strain determinations were well conditioned. Table 7.1

summarizes the range of values, the largest and smallest (absolute) values in magnitude, and

the average and standard deviation (dispersion about the mean) for each robustness parameter.

Note that the averages and standard deviations of these parameters are all of the same

magnitude as the relative accuracy of the observations. Individual values less than about

10 ppm may therefore not be very statistically significant (this should be investigated more
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rigourously by developing and implementing algorithms for determining the standard

deviations of the strength parameters).

Table 7.1 Summary of robustness results for the HOACS network.
,.

Robustness in Robustness in Robustness in
rotation (J.1Iad) shear (ppm) scale (ppm)

Maximum -1.6 10.9 10.4
Minimum -9.1 2.1 -7.7
Largest absolute -9.1 10.9 10.4
Smallest absolute -1.6 2.1 3.4
Mean -5.3 5.1 2.4
Standard deviation 2.2 2.6 5.9

The robustness in rotation results are illustrated in Figure 7.6 and listed in Table 7.3.

These results describe the ability of the network to resist local changes in orientation (twisting).

The largest values are obtained for station 1017 (-9.1 J..1Iad due to position observation #117),

station 1015 (-8.4 Jlrad due to position observation #117), station 1016 (-8.0 J..lrad due to

position observation #117), and station NO SUCH MOUNTAIN (-8.0 Jlfad due to direction

observation #8). All of these weak points are located on- the perimeter of the· network where

there are fewer observations tying these stations to the rest of the network. Even the largest of

these values, however, is well within frrst-order accuracy standards (20 ppm). The best

(smallest absolute value) robustness in rotation is obtained for station 1007 (-1.6 Jlrad) which,

although located at the bottom edge of the network, has many observations tying this point to

the rest of the network. The average of the differential rotations is only -5.3 llrad and the

standard deviation (dispersion about the mean) only 2.2 fJIad.

The robustness in shear results are given in Figure 7.7 and Table 7.3. These results

describe the ability of the network to resist local deformations in configuration or shape. The

largest values are obtained for station NO SUCH MOUNTAIN (10.9 ppm due to direction

observation #8) and station .1016 (10.6 ppm due to position observation #123), both of which

are on the perimeter of the network and have fewer observation ties. These values are also well
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within frrst-order accuracy limits. The best (smallest absolute value) robustness in shear is

obtained for station 1008 (2.1 ppm) which is in the middle of the network and has many

observation ties connecting it to the rest of the network. The average shear is only 5.1 ppm

and the standard deviation is 2.6 ppm.

The robustness in scale results are given in Figure 7.8 and Table 7.3. These results

describe the ability of the network to resist local deformations in scale (dilation). The largest

values are obtained for. station 1003 (10.4 ppm due to position difference observation #90),

station 1002 (9.6 ppm due to position difference observation #90), station NO SUCH

MOUNTAIN (9.2 ppm due to position observation #114), and station 1016 (-7.7 ppm due to

position difference observation #105). All of these stations are on the perimeter of the network

and have fewer observation ties to the rest of the network. These values are again well within

frrst-order accuracy limits. The best (smallest absolute value) robustness in scale is obtained

for station 1001 (3.4 ppm) which, although at the edge of the network, has many observation

ties (especially 3D position differences) to the rest of the network. The average dilation is only

2.4 ppm and the standard deviation is 5.9 ppm.

Other than the number of observations to and from the points of interest, there does not

seem to be much indication of the cause of the weaknesses. Although different observations

seem to affect different robustness parameters in some cases, there are other cases where these

trends breaks down. We therefore have to rely on an analytical approach to learn about the

weaknesses. More experience and experiments will be required to gain a better understanding

of how the robustness parameters are affected by the different types of observations.
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Figure 7.1 Distance observations for simulated 3D HOACS network.
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Figure 7.2 Direction observations for simulated 3D HOACS network.
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Figure 7.3 Azimuth observations for simulated 3D HOACS network.
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Figure 7.4 3D position observations for simulated 3D HOACS network.
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Figure 7.5 3D position difference observations for simulated 3D HOACS network.
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Figure 7.6 Robustness in rotation for simulated 3D HOACS network.
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Figure 7.7 Robustness in shear for simulated 3D HOACS network.
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Figure 7.8 Robustness in scale for simulated 3D HOACS network.
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Table 7.2 GHOST input data file for simulated 3D HOACS network.

HOACS TERRESTRIAL TEST DATA
13 1 1 111

*
* STATION INFORMATION SECTION

*

Final Report

10
4300NO SUCH MOUNTAIN
43001001 STATION
43001002 STATION
43001003 STATI ON
43001004 STATION
43001005 STATION
43001006 STATION
43001007 STATION
43001008 STATION
43001009 STATION
43001010 STATION
43001011 STATION
43001012 STATION
43001013 STATION
43001014 STATION
43001015 STATION
43001016 STATION
43001017 STATION
43001018 STATION

*
* ASTRONOMIC DATA RECORDS

*
71001STATION
7 1002STATION
7 1003 STATION
7 1004 STATION
7 1005STATION
7 1006STATION
7 1007 5T ATION
7 1008 STATION
7 1009 STATION
7 1010 STATION
7 1011 STATION
7 1012 STATION
7 1013 STATION
7 10 14 STAT ION
7 1015 STATION
7 1016 STATION
7 1017STATION

*
* GEOIDAL DATA RECORDS

*
9300NO SUCH MOUNTAIN
93001001 STATION
93001002 STATION

7. Numerical Examples

30 5 O.OOOOOw 89 55 0.00000 3500.000
30 0 O.OOOOOw 90 0 0.00000 1955.800
30 10 54.0392Sw 89 58 58.98067 2164.320
30 25 40.03862w 90 0 54.04869 1996.800
30 1 46.97851w 90 14 9.01720 2015.190
30 11 47.98894w 90 1458.98289 1914.260
30 23 40.99617w 90 15 57.95561 2203.180
30 0 1.94870w 90 30 52.04613 1937.020
30 11 35.94621 w 90 30 33.01558 2075.930
30 24 16.94934w 90 30 56.02636 2042.170
30 0 57.0379Sw 90 43 .04138 1987.6 10
30 12 20.95802w 90 43 35.04939 1954.820
30 22 1.99561 w 90 45 25.95232 1874.160
29 59 43.97387w 90 59 10.05335 1819.660
30 13 29.02889w 90 59 34.00567 2006.180
30 23 53.99599w 90 58 39.97635 1950.240
29 58 51.95506w 91 15 3.97056 2150.690
30 12 46.02388w 9 1 15 1.05684 2071.250
30 2S 15.02776w 9 1 13 42.95407 1990.500

30 1.08 w 90 1.94000
30 10 56.48 w 89 59 01.10000
30 25 37.30 w 90 00 54.33000
30 0 1 45.69 w 90 14 15.54000
30 11 49.69 w 90 15 0 1.50000
30 23 38.59 w 90 16 02.12000
30 3.51 w 90 30 49.12000
30 11 36.81 w 90 30 36.41000
30 24 16.69 w 90 30 59.39000
30 55.32 w 90 43 0 1.90000
30 12 30.51 w 90 43 37.08000
30 2 1 49.15 w 90 45 23.98000
29 59 45.81 w 90 59 14.06000
30 13 29.75 w 90 59 33.45000
30 23 53.10 w 90 58 47.00000
29 58 50.08 w 9 1 15 6.39000
30 12 45.48 w 9 1 1S 2.23000

o 0 .00010 0 0 .00010 0.000
o 0 .00010 a 0 .00010 10.200
o 0 .00010 0 0 .00010 1O. 100
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93001003 STATION 0 0 .00010 0 0 .00010 10.000
93001004 STATION 0 0 .00010 0 0 .00010 9.800
93001005 STATION 0 0 .00010 0 0 .00010 9.800
93001006 STATION 0 0 .00010 0 0 .00010 9.800
93001007 STATION 0 0 .00010 0 0 .00010 9.600
93001008 STATION 0 0 .00010 0 a .00010 9.500
93001009 STATION 0 0 .00010 0 0 .00010 9.400
93001010 STATION 0 0 .00010 0 0 .00010 9.600
93001011 STATION 0 0 .00010 0 0 .00010 9.200
93001012 STATION 0 0 .00010 0 0 .00010 9.400
93001013 STATION 0 0 .00010 0 0 .00010 9.300
93001014 STATION 0 0 .00010 0 0 .00010 9.100
93001015 STATION 0 0 .00010 0 0 .00010 9.000
93001016 STATION 0 a .00010 0 0 .00010 8.900
93001017 STATION 0 0 .00010 0 0 .00010 9.100
930010 18 STATION 0 0 .00010 0 0 .00010 9.000

*
* AUXILIARV PARAMETER DECLARATIONS

*
94dlSDISSCAl SCAl
943dcDOPXF ROTX ROTV ROT2 SCAl
943ddGPSXF ROTX ROTV ROTZ seAL

*
* DIRECTION OBSERVATIONS

*
10
512 0.7
12 1001 STATION 1002 STATION o 0 0.00000 .70000
12 1001 STATION NO SUCH MOUNTAIN 36 22 19.00000 .70000
12 1001 STATION 1004 STATION 273 39 55.81000 .70000
12 1001 STATION 1005 STATION 307 35 44.15000 .70000
12 1002 STATION 1001 STATION o 0 0.00000 .70000
12 1002 STATION 1005 STATION 89 7 46.95000 .70000
12 1002 STATION 1003 STATION 168 56 24.90000 .70000
12 1002 STATION NO SUCH MOUNTAIN 324 56 2.00000 .70000
12 1003 STATION 1002 STATION o 0 0.00000 .70000
12 1003 STATION 1005 STATION 47 52 52.20000 .70000
12 1003 STATION 1006 STATION 87 5 1 43.81000 .70000
12 1004 STATION 1001 STATION a 0 0.00000 .70000
12 1004STATION 1007 STATION 165 1 48.21000 .70000
12 1004STATION 1005 STATION 257 41 6.38000 .70000
12 1004 STATION NO SUCH MOUNTAIN 340 48 40.00000 .70000
12 1005 STATION 1001 STATION o 0 0.00000 .70000
12 1005 STATION 1004 STATION 43 45 22.67000 .70000
12 1005 STATION 1007 STATION 97 32 3.44000 .70000
12 1005 STATION 1008 STATION 137 6 52.3 1000 .70000
12 1005 STATION 1009 STATION 180 0 39.45000 .70000
12 1005 STATION 1006 STATION 223 47 36.15000 .70000
12 1005 STATION 1003 STATION 269 13 30.41000 .70000
12 1005 STATION 1002 STATION 321 32 4.11000 .70000
12 1006 STATION 1003 STATION o 0 0.00000 .70000
12 1006 STATION 1005 STATION 94 35 13.50000 .70000
12 1006 STATION 1009 STATION 1912435.41000 .70000
12 1007 STATION 1004 STATION o 0 0.00000 .70000
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12 1007 STATION
12 1007 STATION
12 1007 STATION
12 1007 STATION
12 1008 STATION
12 1008 STATION
12 1008 STATION
12 1008 STATION
12 1009 STATION
12 1009 STATION
12 1009 STATION
12 1009 STATION
12 1009 STATION
12 10 lOSTAT ION
12 1010 STATION
12 1010 STATION
12 10 1 1 STAT ION
12 1011 STATION
12 1011 STATION
12 1011 STATION
12 1011 STATION
12 1011 STATION
12 10 11 STAT ION
12 1011 STATION
12 10 12 STAT ION
12 1012 STATION
12 1012 STATION
12 1013 STATION
12 1013 STATION
12 1013 STATION
12 1013 STATION
12 1013 STATION
12 1014 STATION
12 10 14 STAT ION
12 1014 STATION
12 1014 STATION
12 1015 STATION
12 1015 STATION
12 1015 STATION
12 1015 STATION'
12 1a 15 STAT ION
12 10 16 STATION
12 10 16 STAT ION
12 1017 STATION
12 1017 STATION
12 1017 STATION
12 10 17 STAT ION
12 1017 STATION
12 1018 STATION
12 1018 STATION

*
* DISTANCE OBSERVATIONS

*

7. Numerical Examples

1010 STATION
1011 STATION
1008 STATION
1005 STATION
1005 STATION
1007 STATION
1011 STATION
1009 STATION
1005 STATION
1008 STATION
1011 STATION
1012 STATION
1006 STATION
1007 STATION
1013 STATION
1011 STATION
1007 STATION
1010 STATION
1013 STATION
1014 STATION
1015 STATION
1012 STATION
1009 STATION
1008 STATION
1009 STATION
1011 STATION
10 15 STAT ION
1010 STATION
1016 STATION
1017 STATION
1014 STATION
1011 STATION
1011 STATION
1013 STATION
1017 STATION
10 15 STAT ION
1011 STATION
1014 STATION
10 17 STAT ION
1018 STATION
1012 STATION
10 13 STAT ION
1017 STATION
1013 STATION
1016 STATION

1018 STATION
1015 STATION

1014 STATION
1015 STATION
1017 STATION

19 1 56 23.05000 .70000
235 3 54.67000 .70000
278 17 28.81000 .70000
326 26 1.39000 .70000
o 0 0.00000 .70000

92 16 37.74000 .70000
184 45 23.59000 .70000
269 24 40.25000 .70000
o 0 0.00000 .70000

46 30 55.20000 .70000
90 40 53.58000 .70000
127 56 .10000 .70000
320 36 12.55000 .70000
o a 0.00000 .70000

170 12 55.49000 .70000
262 32 42.46000 .70000
o 0 0.00000 .70000

39 25 12.88000 .70000
89 4 44.90000 .70000
136 42 14.89000 .70000
173 27 34.71000 .70000
212 33 47.39000 .70000
26431 31.23000 .70000
315 42 19.42000 .70000
o 0 0.00000 .70000

90 47 7.63000 .70000
199 30 15.18000 .70000
o 0 0.00000 .70000

181 29 32.08000 .70000
228 28 33.78000 .70000
273 33 42.81000 .70000
321 59 17.07000 .70000
o 0 0.00000 .70000

83 56 57.60000 .70000
172 24 26.66000 .70000
269 40 59.47000 .70000
o 0 0.00000 .70000

52 55 42.06000 .70000
100 35 .28000 .70000
144 36 30.28000 .70000
327 49 16.76000 .70000
o 0 0.00000 .70000

273 49 41.47000 .70000
o 0 0.00000 .70000

46 50 42.45000 .70000
231 49 22.16000 .70000
278 28 27.94000 .70000
313 32 37.58000 .70000
o 0 0.00000 .70000

89 19 25.16000 .70000
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52V 0.0 2.0 .0 .0 DISSCAL
2V 1003 STATION 1002 STATION 27464.39500 5.492879
2V 1006 STATION 1005 STATION 22020.80400 4.404168
2V 1009 STATION 1008 STATION 23448.91400 4.689782
2V 1012 STATION 1011 STATION 18 140.43400 3.628086
2V 1015 STATION 1014 STATION 19305.54400 3.861108

2V 1018 STATION 1017 STATION 23 165.241 00 4.633048

*
-*. -AZ"IMUTH OBSERVATIONS

*
538 1.0
3B 1005 STATION
3B 1010 STATION
38 1015 STATION

1004 STATION
1014STATION
1014STATION

175 5 1 33.33000 1.00000
31 1 5 55.59000 1.00000
184 17 23.14000 1.00000

*
* DOPPLER POSITION OBSERVATIONS

*
9S3dcOOPPLER POSITION OBSERVATIONS
92 1001 STATION
92 1003STATION
92 1005STATION
92 1009 STATION
92 1010 STATION
92 1014STATION
92 1016 STATION
92 1018 STATION
943dcDOPXF
97POVDIAGONAL
98 0.01 0.0 1
98 0.0 1 0.01
98 0.0 1 0.01
98 0.01 0.0 1
98 0.0 1 0.0 1
98 0.0 1 0.01
98 0.0 1 0.01
98 0.01 0.01

-55.64 -5530068.70 3171200.3400
-1497.17 -5506232.99 3212211.510

-241 10.43 -551 9043.83 3190045.920
-49612.74 -5507343.03 3210029.190
-69214.24 -5528784.75 3172735.750
-95655.96 -5516780.82 3192779.730

-120827.22 -5529963.78 3169482.250
-118126.76 -5505349.97 3211543.350

0.01
0.01
0.01
0.0 1
0.0 1
0.01
0.01
0.0 1

*
* VLBI POSITION DIFFERENCE OBSERVATIONS

*

0.0
O.15E-5

0.0
0.0

0.0
-0.12E-S

0.0

0.20E-5
-0.40E-5
0.0

0.0
0.0

-0.40E-5
0.0

0.15E-5

913ddVLBI POSITION DIFFERENCE OBSERVATIONS
92 1001 STATION 0.00 -5530065.28 3171180.470
92 1009 STATION -49557.16 -5507340.00 3210009.750
92 1010STATION -69158.69 -5528781.74 3172716.390
92 1018 STATION -118070.97 -5505347.69 3211524.130
97PDVUPPER
98 0.25E-4
98 0.0
98 0.0
980.16E-4
98 -0. 16E-5
98 0.0
98 0.90E-5
98 0.0
98 0.0
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98 0.90E-5
98 0.15E-5
98 0.16E-4
98 0.0
98 0.25E-4
98 0.0
98 0.25E-4
98 0.25E-4
98 0.25E-4

0.0
0.0

-0.20E-5
0.0

0.0

0.0
0.25E-5

0.0
0.0

-0.40E-5

0.0

0.0

*
* GPS POSITION DIFFERENCE OBSERVATIONS

*

3172774.76
3170743.46
3 1928 18.800
3169521.400

2.25E-4
1.0E-4

1.0E-4

1.E-4"
0.64E-4
1.0E-4

9 13ddGPS POSITION DIFFERENCE OBSERVATIONS
92 1010 STATION -69251.20 -5528758.12
92 1013 STATION -95267.38 -5529349.94
921014STATION -95692.56 -5516753,96
92 1016 STATION -120864.08 -5529936.89
943ddGPSXF
97PDVDIAGONAL
98 1.0E-4
98 1.0E-4
98 1.0E-4
99
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Table 7.3 NETAN listing of reliability analysis results for simulated 3D HOACS network.

NETAN: Network Analysls (Verslon 21 Nov 90)

Network Strength Analysls

Plece-Wise Linear Approximation -- Connected Stations

Input network date fl1e : ()
(NETAN) TEST HOACS GHOST TERRESTR IAL DATA

Statlon Name
Lat (OMSt Long (OMS), Ht (m)

Strength ln Rotatlon: Lat/Lon, Let/Ht, Lon/Ht (rad)
Obs :# and Type

Strength ln Shear: Let/Lon, Lat/Ht, Lon/Ht (stral n)
Obs :# and Type

strength in Scele: (straln)
Obs # and Type

NO SUCH M MOUNTAIN
30 4 59.849800 -89 54 59.736034 3500.000000

-0.80265814 t 2E-OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO -

8 dlr 0 0
0.1 091513284E-04 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00

8 dlr 0 0
0.9239484003E-05

114 pos

2 1001 STAT TION
29 S9 59.85 t 957 -89 S9 59.734301 1966.254360

-0.2388609726E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00
111 pos 0 0

0.3112551925E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
1 t 4 pos 0 0

0.3395127742E-05

90 dpos

3 1002 STAT TION
30 1053.849676 -89 58 58.732088 2174.420000

-0.5816950042E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

8 dlr 0 0
0.7 489362239E -05 0.0000000000£ +00 O.OOOOOOOOOOE+00

8 dlr 0 0
0.96258421 geE-OS

90 dpos

4 1003 STAT TION
30 25 39.851202 -90 0 53.729260 2006.840615

-0.55 t 7790657E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
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111 pos 0 0
0.4320969610E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

90 dpos 0 0

0.1044322603E-04

90 dpos

5 1004 STAT TION
30 1 46.853908 -90 14 8.733804 2024.990000

-0.41932638 14E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

111 pos 0 0

0.5046679535E-05 O.OOOOOOOOOOE+00 0.0000000000£+00

8 djr 0 0

0.440928520 1E-05

90 dpos

6 1005 STAT TION

30 11 47.852079 -90 14 58.732385 1924.276268

-0.429981415 1E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

111 pos 0 0

0.2644233588E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

111 pos 0 0

0.5075764374E-os

90 dpos

7 1006 STAT TION

30 23 40.852787 -90 lS 57.734057 2212.980000

-0.4911522032E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO·

111 pos 0 0

0.5689289749E-05 0.0000000000£+00 O.OOOOOOOOOOE+00

90 dpos 0 0

0.6913426577E-05

90 dpos

8 1007 STAT TION

30 0 1.854932 -90 30 51.730790 1946.620000

-0.1625908368E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE +00

44 dlr 0 0

O.227240a046E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00
31 dir 0 0

-0.6314001371 E-05

114 pos

9 1008 STAT TION
30 11 35.852757 -90 30 32.729836 2085.430000

-0.2329687269£-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

44 dir 0 0
0.2080895605E-05 0.0000000000£ +00 O.OOOOOOOOOOE+00

96 dpos 0 0
-0.6 123746780E -05

114 pos

10 1009 STAT TION
30 24 16.851410 -90 30 55.730357 2051.734562

-0.4319115962E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00
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111 pos 0 0
0.3635786501 E-05 0.0 OOOOOOOOOE+00 O.OOOOOOOOOOE+00

114 pos 0 0
0.4993779365E-os

111 pos

11 1010 STAT TION
30 0 56.853268 -90 42 59.731058 1997.382402

-0.4370081402E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
117 pos 0 0

0.7321804042E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
123 pos 0 0

0.5585010a97E-05
123 pos

12 1011 STAT TION
30 12 20.852495 -90 43 34.725644 1964.020000

-0.4090951484E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
117 pos 0 0

0.2837360333£-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
123 pos 0 0

0.439527 1 148£-05
111 pos

13 1012 STAT TION
30 22 1.852968 -90 45 25.723984 1883.560000

-0.3485735196E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
117 pos 0 0

0.6204770709E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
111 pos 0 0

0.5532237335E-05
111 pos

14 1013 STAT TION
29 59 43.854453 -90 59 9.729649 1829.087462

-0.7154654314E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00
117 pos 0 0

0.7849933001 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

123 pos 0 0
0.5357576345E-05

123 pos

15 1014 STAT TION
30 13 28.853227 -90 S9 33.729039 20 15.332708

-0.7117499833E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00
117 pos 0 0

0.3786634816E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00
123 pos 0 0

-0.3498957363E-05
105 dpos

16 1015 STAT TION
30 23 53.852800 -90 58 39.727600 1959.240000

-0.8411430126E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00
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117 pos
0.3517979138E-05

114 pos
0.3743625715E-05

90 dpos

o 0
O.OOOOOOOOOOE+OO
o 0

O.OOOOOOOOOOE+00

Final Report

17 1016 STAT TION
29 58 51.854512 -91 15 3.728499 2159.675769

-0.8032074231 E-os O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

117 pos 0 0
0.1062148367E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

123 pos 0 0
-0.7689695578E-05

105 dpos

18 1017 STAT TION
30 12 45.855024 -91 15 0.725979 2080.350000

-0.9 132876044E-OS O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00'

117 pos 0 0
0.4900893724E-os O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

126 pos 0 0
-0.5868983027E-05

126 pos

19 1018 STAT TION
30 25 14.852635 -91 13 42.726788 1999.590054
-0.6260417822E~05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

117 pos 0 0
0.3538720212E-05 0.0000000000£+00 O.OOOOOOOOOOE+00

126 pos 0 0
0.3535383204E-05

90 dpos
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7 . 3 Real 2D Network

A real2D network was obtained from the Canadian Geodetic Survey for an area in Quebec

along the south shore of the St. Lawrence River. The network consists of a total of 58

stations. Only one point is fixed and a single azimuth observation is used to control the datum

orientation. The network consists of the following observations:

• 125 distance observations with standard deviations ranging from 1 em + 2 ppm to 6 em

+ 6 ppm (most around 3 em + 3 ppm)

• 307 direction observations with standard deviations ranging from 0.6 to 2.0 seconds

(most around 0.7 seconds)

• 1 azimuth observation with a standard deviation of 0.8 seconds.

Figures 7.9 to 7.11 illustrate the locations of the stations and the different types of

observations. Table 7.5 gives a listing of the input GHOST data file for this network.

The results from the NETAN robustness analysis are displayed in terms of robustness in

rotation (local twisting), robustness in shear (local changes in configuration or shape), and

robustness in scale in Figures 7.12, 7.13, and 7.14, respectively. The NETAN output listing

for this analysis is given in Table 7.6. These robustness results are all based on 0.0=5% and

~o=5% which gives a non-centrality parameter of ~Ao=3.61 (the standardized value of

maximum undetectable error). Different ao and ~o result in a different ~Ao which only scales

the magnitude of the strength parameters by the ratio of the non-centrality parameters. The

plots are otherwise identical.

The results indicate that the weakest point in the network is at station HEMMING where

the differential rotation is 33 Ilrad, shear is 39 ppm, and dilation is 21 ppm. These relatively

large deformations, however, are actually a result of a weakness in the detennination of the

strain primitives rather than a weakness in the network itself. The points connected to this

station are nearly collinear which makes the fitting of a plane surface to these points ill­

conditioned for the detennination of the strain elements. This problem with the determination

of strain has already been pointed out by Craymer et al. [1989]. It may be possible to detect
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such ill-conditioning by computing the determinant of the matrix of Donnal equations for the

determination of the strain elements. On the other hand, it would be more useful in general to

compute standard deviations for the strain primitives and test them for statistical significance.

Station HEMMING will therefore not be considered further in the following discussion of the

results.

A number of points were found to be uniquely determined by a minimum number of

observations. These observations were omitted from the robustness analysis since their

redundancy numbers are zero resulting in infinitely large maximum undetectable errors. The

robustness parameters for these points have been set to zero in the output listing. As discussed

in the previous chapter, it is recommended to include these observations and points in the next

version of NETAN by setting their maximum undetectable errors to a very large number (say,

O.33E33)- so that they will show up as very large weaknesses in the contour plots of the

robustness parameters.

The single azimuth controlling the datum orientation was also omitted from the analysis

since its redundancy number was very small. This would give a very large maximum

undetectable error that would overwhelm the robustness analysis. As discussed in the previous

chapter, we also recommend that in a future version of NETAN these observations be included

in the robustness analysis so that the weakness in datum definition would be evident as large

robustness parameters in the contour plots.

The results indicate that the north part of the network is relatively weaker than the south

part. Table 7.4 summarizes the range of values, the largest and smallest (absolute) values in

magnitude, and the average and standard deviation for each robustness parameter. Note again

that the average and standard deviations of these parameters are all of the same magnitude as

the relative accuracy of the observations. Values less than about 10 ppm are therefore probably

not very statistically significant. The only obviously common feature to most of these weak

points is the lack of direction observations emanating from them. Although it seems reasonable
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that this may have a detrimental effect on differential rotation and shear, it is not clear why this

would also cause relatively large dilations.

Table 7.4 Summary of robustness results for the real network.

Maximum
Minimum
Largest absolute
Smallest absolute

Robustness in
rotation (Jlrad)

16.2
-19.8
-19.8

1.8

Robustness in
shear (ppm)

38.7
0.6

38.7
0.6

Robustness in
scale (ppm)

22.5
-4.2
22.5

0.7

The robustness in rotation results are illustrated in Figure 7.12 and listed in Table 7.6.

These results describe the ability of the network to resist local changes in orientation (twisting).

The largest values are obtained for station STRATFORD (-19.8 ~rad due to direction

observation #228), station KINGSEY FALLS (16.2 J.lIad due to distance observation #412),

station ADSTOCK (-12.3 Ilrad due to direction observation #151), station ARTHABASKA

(11.9 Jlrad due to distance observation #412), and station ST ZEPHIRIN (-11.1 J.1rad due to

distance observation #401). All these stations have relatively fewer observation ties connecting.

them to the rest of the network (generally only a few directions and distances at most). Note

that these values are within first-order accuracy standards, however. The best (smallest

absolute value) robustness in rotation is obtained for station ST ARMAND (1.8 Jlrad) which

has many more observation ties (14 directions and 2 distances) than the weak points.

The robustness in shear results are given in Figure 7.13 and Table 7.6. These results

describe the ability of the network to resist local deformati~ns in configuration or shape. The

largest values are obtained for station ST ZEPHIRIN (21.4 ppm due to distance observation

#401), station STRATFORD (17.8 ppm due to direction observation #228), station

ARlliABASKA (15.9 ppm due to distance observation #412), station VIANNEY (15.0 ppm

due to distance observation #383), station KINGSEY FALLS (14.0 ppm due to distance

observation #412), and station GILBERT (13.5 ppm due to position observation #123). All of
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these points have relatively fewer observation ties connecting them to the rest of the network.

With the exception of ST ZEPHIRIN, these values are also within frrst-order accuracy limits.

The best (smallest absolute value) robustness in shear is obtained for station HEREFORD (0.6

ppm) which has many more observation ties (16 directions and 4 distances) than the weak

points.

The robustness in scale results are given in Figure 7.14 and Table 7.6. These results

describe the ability of the network to resist local deformations in scale (dilation). The largest

values are obtained for station VIANNEY (22.5 ppm due to distance observation #383), station

ARTHABASKA (18.0 ppm due to distance observation #412), station ST ZEPHIRIN (17.0

ppm due to distance observation #401), station STRATFORD (15.4 ppm due to distance

observation #422), station ADSTOCK (12.9 ppm due to distance observation #395), and

station KINGSEY FALLS (11.6 ppm due to direction obsetvation #244). All of these points

have relatively fewer observation ties connecting them to the rest of the network. With the

exception of VIANNEY, these values are also within fIrst-order accuracy limits. The best

(smallest absolute value) robustness in scale is obtained for station SHERBROOKE (0.7 ppm)

which has many more observation ties (18 directions and 9 distances) than the weak: points.
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Figure 7.9 Distance observations for real 2D network.
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Figure 7.10 Direction observations for real 2D network.
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Figure 7.11 Azimuth observation for real 2D network.
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Figure 7.14 Robustness in scale for rea12D network.
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Table 7.5 GHOST input data file for real 2D network.

Final Report

Real 20 Network, Geodetic Survey of Canada. Sigma records commented out.
13 1 1 111

4 09206 ORFORD N45 1843.080825W 72 1430.207541 851.9000
10
5 08200 ST ARMAND N45 246.875283W 72 4420.977882 711.7200
5 09201 VAMASKA N45 2645.375984W 72 52 8.649835 421.7800
4 652401 FARNHAM N45 1743.910275W 72 5719.624866 77.9800
4 652402 BROMONT N45 1721.079434W 72 3816.142978 552.8000
4 69K4238 DAIGLE 1 QLF N45 29 9.969288W 72 3138.846985 276.3000
5 712051 ST MAJORIQUE 1 QLF N45 5458.877438W 72 38 1.278776 82.9280
4 712056 WICKHAM 1 QLF N45 46 7.568544W 72 3621.113477 106.8230
4 08207 OWLS HEAD N45 345.156706W 72 1752.895781 749.9000
5 09202 DUSABLE 1 274 N46 1237.12269SW 73 1159.764446 135.9410
5 09204 CARMEL 1 173 N46 29S8.646202W 72 3739.182006 188.6410
5 09205 HAM N45 4728.148868W 71 38 .735368 711.7000
4 09207 HEREFORD N45 457.209 129W 71 36 3.594684872.1000
4SBF 09208 MEGANTIC N45 2651.257S97W 71 713.0032151085.7875
5 09209 THETFORD N46 848.515359W 71 2011.406728 694.0700
5 09210 llNIERE N45 4945.092500W 70 2220.286423 776.0900
5 09216 ARTHABASKA 1 233 N46 314.11 0312W 71 5316.763943 350.2910
5 14200 STRATFORD 2 233 N45 4739.752238W 71 1520.012822 436.9000
5 65K0335 CROIX N45 3346.481649W 70 5222.732410 490.8600
5 66KP115 CARIBOU E-15 1 164N46 o15.967744W 712410.058178556.7000
4 68K2071 SHERBROOKE N45 2046.261393W 71 5533.821339 440.3000
4 68K2073 BEAUVOIR 164N45 2717.104197W 715353.741152307.9000
5 692009 HONORE N45 5653. 160925W 70 5016.132369 474.3400
5 692010 GRELOTS 1 172 N45 59 2.1 93228W 71 121.630665 408.7890
5 692011 BROUGHTON 1 172 N46 817.581129W 71 549.572672 608.5880
5 692012 ADSTOCK 1 164 N46 146.97291 OW 71 1218.355831 713.1880
4 69K4239 DUSSAULT 1 164 N45 28 4.320930W 72 1351.756838 430.8000
4 69K4240 GALLUP HILL 1 164 N45 38 6.700659W 72 1157.248631 348.2000
4 69K4241 SOUTH DURHAM 1 164 N45 3848.371625W 72 2126.889288 208.8 100
4 69K4242 PINNACLE 1 QLF N45 4321.44S932W 72 041.591747 416.4000
4 69K4243 LAROCHELLE 1 164 N45 3143.227349W 72 423.551476 333.1000
4 69K4346 CHARLES 1 163 N45 5234.2757S9W 72 2739.825309 93.3900
4 69K4348 LEMAIRE 1 163 N45 5123.415278W 72 3452.384059 93.5300
4 69K4349 BREBOEUF 1 163 N45 5020.787836W 72 2959.667450 89.2000
4 69K4350 HEMMING 2 163 N45 5146.549886W 72 27 .762848 115.3700
4 70K4244 MAGOG N45 1357.376S94W 72 7 2.330626 345.0000
4 70K4245 AUSTIN N45 12 7.761103W 72 1445.003137 318.3000
4 70K4631 HATLEY N45 9 8.355020W 71 5318.368308 423.0000
4 70K4632 MARTIN N45 1823.800369W 71 3831.348936 423.1000
4 70K4633 CHAPMAN 164 N45 3416.980871 W 71 4044.156151 658.4000
4 70K4634 ASBESTOS QLF N45 4516.870 156W 71 5442.774960 338.1000
4 70K4635 WEEDON N45 3832.841031 W 71 2642.205826 413.6000
5 70K4637 GILBERT N45 3621.022836W 70 5844.386984 570.8000
5 70K4638 COULOMBE 1 QLF N45 51 12.412896W 71 2919.000750 465.8000
4 70K4639 MOISAN 4 164 N45 5356.869207W 71 3435.946548 597.5000
5 712050 BON CONSEIL 1 174 N45 5840.686135W 72 2258.068549 121.2210
5 712053 ST ZEPHIRIN 1 174 N46 447.587703W 72 39 2.801747 55.2430
4 712055 MALLARD 1 QLF N45 4628.674715W 72 24 5.669217 171.4480
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4 712057 DRUMMOND 174 N45 5416.673859W 72 3135.417580 93.6700
5 71 K6154 STORNOWAV N45 4245.3780 12W 71 1213.496977 510.0000
5 7 1K6 155 STE PRAXEDE 164 N45 5351.21 0905W 7 1 1323. 129308 39 1.4000
5 71 K6156 SEBASTIEN N45 4536.557799W 70 5519.545890 825.7000
5 71 K6159 LAPOINTE QLF N45 54 6.371447W 71 3414.951193 627.8000
5 71 K6165 VIANNEV 1 QlF N46 452.995542W 71 3730.212463 592.3000
5 72K7455 VICTORIAVILlE 1 QLF N46 041.609238W 715546.742907274.7530
5 72K7457 SEVIGNY 1 QLF N45 5613.677425W 71 4317.715169 528.2000
5 72K7462 KINGSEY FALLS 1 QLF N45 54 5.083744W 72 440.296902 154.5000
5 72K7463 ST FELIX 1 QLF N45 4758.866518W 72 1128.912506 209.6000
7 36 09202 DUSABLE 274 N46 12 36.48 W 73 12 01.40 135.9
7 71 09206 ORFORD 233 N45 18 39.31 W 72 14 30.93 838.
7 72 09208 MEGANTIC 233 N45 26 52.92 W 71 07 14.60 1082.
7 38 09216 ARTHABASKA 233 N46 03 26.01 W 71 53 35.16 350.29 1
7 72 692009 HONORE 164 N45 56 57.00 W 70 50 18.42 474.3
7 72 69K4241 SOUTH DURHAM 163 N45 38 53.69 W 72 2 1 41.72 206.9
7 72 712057 DRUMMOND 174 N45 5425.52 W 72 3150.58 93.7
9 08200 ST ARMAND MAIN 1.3 4.33 -10.02 -28.38
9 08207 OWLS HEAD MAIN 1.3 -1.11 1.25 -27.64
9 09201 VAMASKA MAIN 1.3 2.30 -8.89 -29.49
9 09202 DUSABLE GEM 1OB 1 1.22 -4.18 -31.16
9 09204 CARMEL GEM 1OB 1 1.45 -4.06 -30.02
9 09205 HAM MAIN 1.3 -2.39 -2.41 -27.72
9 09206 ORFORD MAIN 1.4 -3.12 -.48 -27.99
9 09207 HEREFORD MAIN 1.3 -.74 -5.85 -26.57
9 09208 MEGANTIC MAIN 1.3 3.21 -3.41 -26.32
9 09209 THETFORD MA IN1.3 4.08 - .49 -27.50
9 09210 LINIERE MAIN 1.3 5.49 -8.74 -25.80
9 09216 ARTHABASKA GEM 1062 1.05 -3.77 -28.56
9 14200 STRATFORD GEM 1OB2 .73 -3.46 -27.03
9 652401 FARNHAM MAIN1.3 1.91 -6.72 -29.28
9 652402 BROMONT MAIN 1.3 1.22 -12.62 -28.71
9 65K0335 CROIX MAIN 1.3 2.05 -4.21 -26.14
9 66KPl15 CARIBOU E-15 GEM10B2 .97 -3.56 -27.54
9 68K2073 BEAUVOIR GEM10B2 .40 -3.67 -27.60
9 692009 HONORE GEM 1062 .87 -3.28 -26.57
9 692010 GRELOTS MAIN 1.3 .98 .87 -26.88
9 692011 BROUGHTON GEM 1OB2 1.09 -3.44 -27.09
9 692012 ADSTOCK MAIN 1.3 -1.44 3.70 -27.21
9 68K2071 SHERBROOKE GEM 1082 .27 -3.65 -27.45
9 69K4238 DAIGLE GEM 1OB2 .50 -3.90 -28.95
9 69K4239 DUSSAULT MAIN 1.3 -1.05 .29 -28.30
9 69K4240 GALLUP HILL GEM 108 1 .63 -3.82 -28.61
9 69K4241 SOUTH DURHAM GEM 1OB2 .66 -3.88 -28.97
9 69K4242 PINNACLE GEM 1OB2 .71 -3.77 -28.39
9 69K4243 LAROCHELLE GEM 10B2 .50 -3.75 -28. t 1
9 69K4346 CHARLES GEM lOB 1 .90 -3.95 -29.62
9 69K4348 LEMAIRE GEM t OBO .89 -3.99 -29.83
9 69K4349 BREBOEUF GEM lOBO .87 -3.96 -29.64
9 69K4350 HEMMING GEM 1OB 1 .89 -3.95 -29.57
9 70K4244 MAGOG MAIN 1.4 -2.76 -.19 -27.60
9 70K4245 AUSTIN MAIN 1.4 -2.62 .52 -27.78
9 70K4631 HATLEV GEM 10B2 .04 -3.59 -27.06
9 70K4632 MARTIN GEM t 082 .1 9 -3.52 -26.88
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9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9

*

70K4633 CHAPMAN MAIN 1.3
70K4634 ASBESTOS GEM 1062
70K4635 WEEDON GEM10B2
70K4637 GILBERT MAIN 1.3
70K4638 COULOMBE MAIN 1.3
70K4639 MOISAN MAIN 1.4
712050 BON CONSE IL GEM lOBO
712051 ST MAJORIQUE GEM lOBO
712053 ST ZEPHIRIN GEM lOBO
712055 MALLARD GEM10BO
712056 WICKHAM GEM10BO
712057 DRUMMOND GEM10BO
71 K6154 STORNOWAV GEM 1082
71 K6155 STE PRAXEDE MAIN 1.3
71K6156 SEBASTIEN MAIN1.3
71 K6159 LAPOINTE MAIN 1.4
71K6165VIANNEV MAIN1.3
72K7455 VICTORIAVILLE GEM10Bl
72K7457 SEVIGNV GEM 1OB2
72K7462 KINGSEV FALLS GEM 1OB 1
72K7463 ST FELIX GEM10Bl

-3.42
.74

.57
1.97
-3.47

-3.03
1.00

.95
1.10
.80
.80
.93

.63
-1.41
2.48

-2.99
5.99

1.01
.92

.90
.81

-1.45 -27.41
-3.74 -28.23

-3.51 -27.12
-2.60 -26.34

.35 -27.53
-1.74 -27.76

-3.94 -29.59
-4.01 -30.02

-4.04 -30.22
-3.92 -29.32
-3.98 -29.72
-3.98 -29.79
-3.42 -26.83
1.24 -27.11

-2.42 -26.47
-1.67 -27.76

-4.28 -28.02
-3.79 -28.62

-3.69 -28.10
-3.83 -28.83

-3.85 -28.92

* Observations

*
40
* 5 1F 16 0.85 0.0 0.01969 .20 .20G-21 3 QlF

1 69K4238 DAIGLE 712056 WICKHAM 0 0 0.00000 .850
1 69K4238 DAIGLE 712055 MALLARD 27 57 34.93000 .850
1 69K4238 OAI GLE 69K4241 SOUTH DURHAM 47 32 33.13000 .850
1 69K4241 SOUTH DURHAM 69K4238 DA IGLE 0 0 0.00000 .850
1 69K4241 SOUTH DURHAM 7 12055 MALLARD 129 45 4.61000 .851
1 712056 WICKHAM 69K4348 LEMAIRE a a 0.00000 .852
1 712056 WICKHAM 69K4349 BREBOEUF 35 21 4.54000 .852
1 712056 WICKHAM 712055 MALLARD 76 28 25.74000 .851
1 712056 WICKHAM 69K4238 DAIGLE 157 51 13.81000 .850
1 712055 MALLARD 69K4241 SOUTH DURHAM 0 0 0.00000 .851
1 712055 MALLARD 69K4238 DAIGLE 30 39 56.09000 .850
1 712055 MALLARD 712056 WICKHAM 101 19 33.90000 .851
1 712055 MALLARD 69K4348 LEMAIRE 136 45 37.08000 .851
1 7 12055 MALLARD 69K4349 BREBOEUF 146 47 25.39000 .852
1 712055 MALLARD 69K4346 CHARLES 171 21 7.70000 .851
1 69K4350 HEMMING 69K4346 CHARLES a 0 0.00000 .917
1 69K4350 HEMMING 712057 DRUMMOND 337 49 51.27000 .854
1 712057 DRUMMOND 69K4346 CHARLES 0 0 0.00000 .856
1 712057 DRUMMOND 69K4350 HEMMING 6 8 43.91000 .854
1 7 12057 DRUMMOND 69K4349 BREBOEUF 42 17 1.97000 .853
1 712057 DRUMMOND 69K4348 LEMAIRE 96 35 36.40000 .854
1 69K4348 LEMAIRE 712057 DRUMMOND 0 a 0.00000 .854
1 69K4348 LEMAIRE 69K4346 CHARLES 38 1948.12000 .852
1 69K4348 LEMAIRE 69K4349 BREBOEUF 68 33 46.39000 .855
1 69K4348 LEMAIRE 712055 MALLARD 84 36 03.20000 .851
1 69K4348 LEMAIRE 712056 WICKHAM 1524134.08000 .852
1 69K4349 BREBOEUF 712055 MALLARD 0 0 0.00000 .852
1 69K4349 BREBOEUF 69K4348 LEMAIRE 153 55 56.77000 .855
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1 69K4349 BREBOEUF 712057 DRUMMOND 2 11 3 36.34000
1 69K4349 BREBOEUF 69K4346 CHARLES 263 4 13.69000
1 69K4346 CHARLES 69K4349 BREBOEUF 0 0 0.00000
1 69K4346 CHARLES 69K4348 LEMAIRE 40 37 44.90000
1 69K4346 CHARLES 712057 DRUMMOND 85 42 19.22000
1 69K4346 CHARLES 69K4350 HEMMING 294 1 10.24000
1 69K4346 CHARLES 712055 MALLARD 301 29 29.62000

* 51 F 17 .70 0.0 0.0 1971 .20 .20FORGUESRL GEOD
1 712057 DRUMMOND 712055 MALLARD 0 0 0.00000 .70 1
1 712057 DRUMMOND 712056 WICKHAM 56 10 20.86000 .701
1 712055 MALLARD 712056 WICKHAM 0 0 0.00000 .701
1 712055 MALLARD 712057 DRUMMOND 58 25 52.51000 .701
1 712056 WICKHAM 712055 MALLARD 0 0 0.00000 .701
1 712056 WICKHAM 712057 DRUMMOND 294 36 9.46000 .701

* 51 F 1a .70 0.0 0.06971 .20 .20G-252 QLF
1 09201 VAMASKA 69K4238 DAIGLE 0 0 0.00000 .700
1 09201 VAMASKA 09206 ORFORD 26 14 32.07000 .700
1 69K4238 DAIGLE 69K4241 SOUTH DURHAM 0 0 0.00000 .700
1 69K4238 DAIGLE 69K4239 DUSSAULT 58 20 6.87000 .700
1 69K423·8 DAIGLE 09206 ORFORD 94 12 10.59000 .700
1 69K4238 DAIGLE 09201 VAMASKA 224 4 44.22000 .700
1 09206 ORFORD 09201 VAMASKA 0 0 0.00000 .700
1 09206 ORFORD 69K4238 DAIGLE 23 52 57.48000 .700
1 09206 ORFORD 69K4239 DUSSAULT 75 40 44.35000 .701
1 09206 ORFORD 68K2071 SHERBROOKE 154 4 12.77000 .700
1 09206 ORFORD 70K4631 HATLEY 195 23 38. 11000 .700
1 09206 ORFORD 70K4244 MAGOG 204 58 14.12000 .701
1 09206 ORFORD 70K4245 AUSTIN 254 26 4.14000 .702
1 09206 ORFORD 08207 OWLS HEAD 262 0 29.83000 .700
1 69K4241 SOUTH DURHAM 69K4240 GALLUP HILL 0 0 0.00000 .702
1 69K4241 SOUTH DURHAM 69K4239 DUSSAULT 57 39 21.24000 .700
1 69K4241 SOUTH DURHAM 69K4238 DAIGLE 120 46 53.20000 .700
1 69K4239 DUSSAULT 68K2071 SHERBROOKE 0 0 0.00000 .700
1 69K4239 DUSSAULT 09206 ORFORD 63 20 52.66000 .701
1 69K4239 DUSSAULT 69K4238 DAIGLE 155 41 2.20000 .700
1 69K4239 DUSSAULT 69K4241 SOUTH DURHAM 214 13 25.92000 .700
1 69K4239 DUSSAULT 69K4240 GALLUP HILL 248 1034.54000 .701
1 69K4239 DUSSAULT 69K4243 LAROCHELLE 301 48 33.39000 .701
1 69K4239 DUSSAULT 68K2073 BEAUVOIR 333 40 3.05000 .700
1 69K4240 GALLUP HILL 69K4242 PINNACLE 0 a 0.00000 .701
1 69K4240 GALLUP HILL 69K4243 LAROCHELLE 83 54 31.06000 .701
1 69K4240 GALLUP Hill 69K4239 DUSSAULT 131 17 30.49000 .701
1 69K4240 GALLUP HILL 69K4241 SOUTH DURHAM 21 9 41 1.14000 .702
1 69K4242 PINNACLE 70K4634 ASBESTOS 0 a 0.00000 .703
1 69K4242 PINNACLE 70K4633 CHAPMAN 57 32 43.37000 .700
1 69K4242 PINNACLE 69K4243 LAROCHELLE 127 18 20.41000 .700
1 69K4242 PINNACLE 69K4240 GALLUP HILL 171 10 14.78000 .701
1 69K4243 LAROCHELLE 69K4242 PINNACLE 0 0 0.00000 .700
1 69K4243 lAROCHELLE 70K4633 CHAPMAN 68 32 34.9 1000 .700
1 69K4243 LAROCHELLE 68K2073 BEAUVOIR 108 22 53.9 1000 .701
1 69K4243 LAROCHELLE 68K2071 SHERBROOKE 137 48 47.34000 .700
1 69K4243 LAROCHELLE 69K4239 DUSSAULT 228 47 2 ,. 19000 .701
1 69K4243 LAROCHELLE 69K4240 GALLUP HILL 307 46 24.87000 .701
1 68K2073 BEAUVOIR 68K2071 SHERBROOKE 0 0 0.00000 .702
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1 68K2073 BEAUVOIR 69K4239 DUSSAULT 83 5 20.51000 .700
1 68K2073 BEAUVOIR 69K4243 LAROCHELLE 110 49 24.26000 .701
1 68K2073 BEAUVOIR 70K4632 MARTIN 299 2 22.45000 .700
1 68K2071 SHERBROOKE 69K4243 LAROCHELLE 0 0 0.00000 .700
1 68K2071 SHERBROOKE 68K2073 BEAUVOIR 39 44 44.10000 .702
1 68K2071 SHERBROOKE 70K4633 CHAPMAN 67 7 11.58000 .700
1 68K2071 SHERBROOKE 70K4632 MARTIN 130 36 5.77000 .700
1 6BK2071 SHERBROOKE 70K4631 HATLEV 201 42 34.67000 .701
1 68K2071 SHERBROOKE 08207 OWLS HEAD 252 29 39.97000 .700
1 68K2071 SHERBROOKE 70K4244 MAGOG 259 31 22.7 t000 .701
1 68K2071 SHERBROOKE 09206 ORFORD 290 54 20.21000 .700
1 68K2071 SHERBROOKE 69K4239 DUSSAULT 329 9 59. t 3000 .700
1 70K4244 MAGOG 08207 OWLS HEAD 0 a 0.00000 .700
1 70K4244 MAGOG 70K4245 AUSTIN 34 30 27.98000 .702
1 70K4244 MAGOG 09206 ORFORD 95 8 2.19000 .701
1 70K4244 MAGOG 68K2071 SHERBROOKE 192 51 3.39000 .70 1
1 70K4245 AUSTIN 08207 OWLS HEAD a 0 0.00000 .701
1 70K4245 AUSTIN 09206 ORFORD t 66 40 21.85000 .702
1 70K4245 AUSTIN 70K4244 MAGOG 236 34 57.11000 .702
1 70K4633 CHAPMAN 68K2071 SHERBROOKE 0 0 0.00000 .700
1 70K4633 CHAPMAN 69K4243 LAROCHELLE 43 36 38.24000 .700
1 70K4633 CHAPMAN 69K4242 PINNACLE 85 18 27.31000 .700
1 70K4633 CHAPMAN 70K4634 ASBESTOS 100 36 48.69000 .700
1 70K4633 CHAPMAN 09205 HAM 150 27 22.68000 .700
1 70K4633 CHAPMAN 70K4635 WEEDON 208 44 22.87000 .70 t
t 70K4633 CHAPMAN 70K4632 MARTIN 3 t 6 37 6.26000 .700
1 70K4632 MARTIN 70K4635 WEEDON 0 0 0.00000 .700
1 70K4632 MARTIN 09208 MEGANTIC 46 29 13.96000 .700
1 70K4632 MARTIN 09207 HEREFORD 1SO 15 5.41000 .700
1 70K4632 MARTIN 70K4631 HATLEV 206 11 12.76000 .700
1 70K4632 MARTIN 68K2071 SHERBROOKE 258 55 12.17000 .700
1 70K4632 MARTIN 70K4633 CHAPMAN 332 3 25.58000 .700
1 70K4631 HATLEV 68K2071 SHERBROOKE 0 0 0.00000 .701
1 70K4631 HATLEV 70K4632 MARTIN 56 9 32.26000 .700
1 70K4631 HATLEV 09207 HEREFORD 116 36 44.09000 .700
1 70K4631 HATLEV 08207 OWLS HEAD 260 44 22.26000 .700
1 70K4631 HATLEV 09206 ORFORD 310 31 6.17000 .700
1 70K4634 ASBESTOS 09205 HAM a 0 0.00000 .701
1 70K4634 ASBESTOS 70K4633 CHAPMAN 58 54 59.51000 .700
1 70K4634 ASBESTOS 69K4242 PINNACLE 166 3 56.41000 .703
1 09205 HAM 70K4639 MOISAN 0 0 0.00000 .701
1 09205 HAM 70K4638 COULOMBE 38 10 20.70000 .70 1
1 09205 HAM 09208 MEGANTIC 113 16 24.69000 .700
1 09205 HAM 70K4635 WEEDON 1 18 8 13.44000 .700
1 09205 HAM 70K4633 CHAPMAN 168 3 43.54000 .700
1 09205 HAM 70K4634 ASBESTOS 239 18 10.09000 .70 1
1 70K4635 WEEDON 09205 HAM 0 0 0.00000 .700
1 70K4635 WEEDON 70K4638 COULOMBE 33 19 38.48000 .700
1 70K4635 WEEDON 71 K6154 STORNOWAV 108 55 30.15000 .701
1 70K4635 WEEDON 09208 MEGANTIC 171 54 56.82000 .700
1 70K4635 WEEDON 70K4632 MARTIN 244 1 45.40000 .700
1 70K4635 WEEDON 70K4633 CHAPMAN 288 12 29.60000 .701
1 70K4639 MOISAN 70K4638 COULOMBE 0 0 0.00000 .703
1 70K4639 MOISAN 09205 HAM 73 39 27.26000 .701
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1 70K4638 COULOMBE 71 K61S9 LAPOINTE 0 0 0.00000 .703
1 70K4638 COULOMBE 66KP 115 CARIBOU E-15 71 29 28.41000 .701
1 70K4638 COULOMBE 71 K6155 STE PRAXEDE 126 24 50.10000 .701
1 70K4638 COULOMBE 71 K6154 STORNOWAV 175 1 59.09000 .700
1 70K4638 COULOMBE 70K4635 WEEDON 221 38 54.81000 .700
1 70K4638 COULOMBE 09205 HAM 288 21 25.12000 .701
1 70K4638 COULOMBE 70K4639 MOISAN 356 31 35.59000 .703
1 71K6159 LAPOINTE 71K616S VIANNEV 0 0 0.00000 .701
1 71K61S9 LAPOINTE 66KP115 CARIBOU E-1~....60 35 18.24000 .701
1 71 K6159 LAPOINTE 70K4638 COULOMBE 141 55 10.70000 .703
1 71 K61 S4 STORNOWAV 71 K61 S5 STE PRAXEDE 0 0 0.00000 .701
1 71K6154STORNOWAV 71K6156 SEBASTIEN 8031 13.62000 .700
1 71 K61 S4 STORNOWAV 70K4637 GILBERT 128 12 39.02000 .701
1 71 K6154 STORNOWAV 09208 MEGANTIC 171 40 32.86000 .700
1 71 K6154 STORNOWAY 70K4635 WEEDON 251 44 19.65000 .701
1 71 K6154 STORNOWAV 70K4638 COULOMBE 309 31 32.90000 .700
1 71 K61 SS STE PRAXEDE 692012 ADSTOCK 0 a 0.00000 .701
1 7 1K61 S5 STE PRAXEDE 692010 GRELOTS 52 48 9.24000 .70 1
1 71K6155 STE PRAXEDE 71K6156 SEBASTIEN 11737 8.74000 .700
1 71K6155 STE PRAXEDE 71K6154STORNOWAV 1702333.07000 .701
1 71 K6155 STE PRAXEDE 70K4638 COULOMBE 251 17 57.87000 .701
1 71 K6155 STE PRAXEDE 66KP 115 CARIBOU E-15 305 5 56.85000 .701
1 692010 GRELOTS 692009 HONORE 0 0 0.00000 .70 1
1 692010 GRElOTS 71 K6156 SEBASTIEN 57 3 46.11000 .700
1 692010 GRELOTS 71 K6155 STE PRAXEDE 132 53 33.64000 .701
1 692010 GRELOTS 692012 ADSTOCK 184 23 49.21000 .701

* 5 1F20 .70 0.0 0.0 1971 .20 .20FORGUESRL GEOD
712050 BON CONSEIL 712055 MALLARD 0 0 0.00000 .700
712050 BON CONSEIL 712056 WICKHAM 33 3 44.15000 .700
712050 BON CONSEIL 712057 DRUMMOND 50 10 11.76000 .701
712050 BON CONSEIL 712051 ST MAJORIQUE 66 59 55.20000 .701
712051 ST MAJORIQUE 712050 BON CONSEIL 0 0 0.00000 .701
712051 ST MAJORIQUE 712057 DRUMMOND 28 21 2.07000 .703
712051 ST MAJORIQUE 712055 MALLARD 60 32 35.67000 .700
712051 ST MAJORIQUE 712056 WICKHAM 10158 5.17000 .701
712050 BON CONSEIL 712057 DRUMMOND 0 0 0.00000 .701
712050 BON CONSEIL 712051 ST MAJORlqUE 16 49 43.04000 .701
712050 BON CONSE IL 7 12055 MALLARD 309 49 48.1 1000 .700
712050 BON CONSE IL 712056 WICKHAM 342 53 33.1 1000 .700
712057 DRUMMOND 712050 BON CONSEIL 0 0 0.00000 .70 1
712057 DRUMMOND 712055 MALLARD 92 18 10.08000 .701
712057 DRUMMOND 712056 WICKHAM 148 28 26.40000 .701
712051 ST MAJORIQUE 712053 ST 2EPHJRIN 0 0 0.00000 .701
71205 1 ST MAJOR IQUE 712050 BON CONSE IL 7440 32.39000 .70 1
712057 DRUMMOND 7 12055 MALLARD a 0 0.00000 .70 1
712057 DRUMMOND 712050 BON CONSEIL 267 41 50.59000 .701
712055 MALLARD 712056 WICKHAM 0 0 0.00000 .701
712055 MALLARD 712050 BON CONSEIL 95 57 33.41000 .700
712057 DRUMMOND 712056 WICKHAM 0 0 0.00000 .701
712057 DRUMMOND 712051 ST MAJORIQUE 76 42 19.21000 .703
712057 DRUMMOND 712050 BON CONSEIL 211 31 33.55000 .701
712056 WICKHAM 712051 ST MAJORIQUE 0 0 0.00000 .701
712056 WICKHAM 712050 BON CONSEIL 44 5 44.55000 .700
712056 WICKHAM 712055 MALLARD 95 4 29.34000 .701
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712055 MALLARD 712051 ST MAJORIQUE 0 a 0.00000 .700
712055 mallard 712050 bon consell 52 27 30.03000 .700
712056 WICKHAM 712055 MALLARD 000.00000 .701
7 t 2056 WICKHAM 712050 BON CONSEIL 309 1 15.17000 .700
712055 MALLARD 712057 DRUMMOND 0 0 0.00000 .701
712055 MALLARD 712050 BON CONSEIL 37 31 41.70000 .700
712055 MALLARD 712056 WICKHAM 301 34 9.60000 .701
712056 WICKHAM 712057 DRUMMOND 0 0 0.00000 .701
712056 WICKHAM 712050 BON CONSEIL 14 25 4.78000 .700
712056 WICKHAM 712055 MALLARD 65 23 48.98000 .701

* S 1F19 .70 0.0 0.01969 .20 .20SELLEVAD GEOD
692010 GRELOTS 692012 ADSTOCK 0 0 0.00000 .701
692010 GRElOTS 6920 11 BROUGHTON 51 35 38.80000 .701

1 692010 GRELOTS 692009 HONORE 175 36 10.89000 .701
* 51 F21 .70 0.0 0.01965 .20 .20G-22 QlF

1 652402 BROMONT 08200 ST ARMAND 0 0 0.00000 .700
1 652402 BROMONT 652401 FARNHAM 7S 14 59.77000 .700
1 652402 BROMONT 09201 'lAHASKA 117 28 38.98000 .700
1 652402 BROMONT 09206 ORFORD 248 43 2.52000 .700
1 09206 ORFORD 652402 BROMONT 0 0 0.00000 .700
1 09206 ORFORD 09201 'lAHASKA 21 35 53.30000 .700
1 09206 ORFORD 08200 ST ARMAND 327 38 30.11000 .700
1 65240 1 FARNHAM 09201 VAMASKA 0 0 0.00000 .70 1
1 65240 1 FARNHAM 652402 BROMONT 69 29 59.23000 .700
1 652401 FARNHAM 08200 ST ARMAND 126 21 55.30000 .700
1 09201 'lAHASKA 09206 ORFORD 0 0 0.00000 .700
1 09201 '1AMASKA 652402 BROMONT 27 9 43.36000 .700
1 09201 '1AMASKA 08200 ST ARMAND 60 23 6.94000 .700
1 09201 'lAHASKA 652401 FARNHAM 95 26 7.78000 .701

* 51 F22 .60 0.0 0.00917 .20 .20BIGGERCA GEOD
1 09206 ORFORD 08200 ST ARMAND 0 0 0.00000 .600
1 09206 ORFORD 09201 VAMASKA 53 57 23.47000 .600
1 09206 ORFORD 09205 HAM 168 22 58.78000 .600
1 09206 ORFORD 09208 MEGANTIC 206 44 27.02000 .600
1 09206 ORFORD 09207 HEREFORD 243 30 22.34000 .600
1 09206 ORFORD 08207 OWLS HEAD 315 57 53.29000 .600
1 09201 'lAHASKA 08200 5T ARMAND 0 0 0.00000 .600
1 09201 YAMASKA 09202 DUSABLE 176 15 45.12000 .600
1 09201 '1AMASKA 09204 CARMEL 201 58 27.05000 .600
1 09201 VAMASKA 09205 HAM 260 49 45.47000 .600
1 09201 YAMASKA 09206 ORFORD 299 36 53.83000 .600
1 09205 HAM 09209 THETFORD 0 0 0.00000 .600
1 09205 HAM 09210 LINIERE 56 58 9.61000 .600
1 09205 HAM 14200 STRATFORD 59 3 26.46000 .600
1 09205 HAM 09208 MEGANTIC 103 21 26.36000 .600
1 09205 HAM 09207 HEREFORD 148 1 39.92000 .600
1 09205 HAM 09206 ORFORD 191 49 56.63000 .600
1 09205 HAM 09201 VAMASKA 218 37 20.09000 .600
1 09205 HAM 09202 DUSABLE 261 27 29.72000 .600
1 09205 HAM 09204 CARMEL 285 58 2.16000 .600

* 51 F 12 .70 0.0 0.0 19 14 .20 .20B IGGERCA GEOD
1 14200 STRATFORD 09205 HAM 0 0 0.00000 .700
1 14200 STRATFORD 09209 THETFORD 81 29 40.13000 .700

* 51 F04 1.20 0.0 0.01909 .20 .20BIGGERCA GEOD
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1.795
1.324

1.550
1.307
1.207

1.380

12198.025
6830.520

9583.193
6605.216
5107.571
7570.098

4 22248.805 12.199
33538.096 17.500
4 14620.739 8.861

4 9938.004 7.055
4 11356.349 7.571

4 16666.069 9.722
4 10478.186 7.247

32007.383 16.768
15903.665 9.397

09205 HAM 09209 THETFORD 0 0 0.00000 1.200
1 09205 HAM 09216 ARTHABASKA 295 55 51.30000 1.200

* 5 1F23 .85 0.0 0.0 1974 .20 .20G-272 QLF
1 71 K6159 LAPOINTE 70K4638 COULOMBE 0 0 0.00000 .853
1 71 K6159 LAPOINTE 09205 HAM 71 3S 7.76000 .851
1 71 K61 59 LAPOINTE 72K7457 SEVIGNV 158 34 38.99000 .851
1 71 K6159 LAPOINTE 71 K6165 VIANNEV 218 4 52.37000 .850
1 72K7457 SEVIGNV 72K7455 VICTORIAVILLE 0 0 0.00000 .851
1 72K7457 SEVIGNV 09216 ARTHABASKA 18 1 30.66000 .851
1 72K7457 SEVIGNV 71 K6165 VIANNEV 87 43 47.83000 .851
1 72K74S7 SEVIGNV 71 K61S9 LAPOINTE 171 17 16.76000 .851
1 72K7457 SEVIGNV 09205 HAM 21953 4.95000 .851
1 72K7457 SEVIGNV 70K4634 ASBESTOS 278 55 28.28000 .850
1 70K4638 COULOMBE 09205 HAM 0 0 0.00000 .851
1 70K4638 COULOMBE 7 1K6 159 LAPO INTE 7 1 38 33.63000 .853
1 09205 HAM 70K4634 ASBESTOS 0 0 0.00000 .850
1 09205 HAM 72K7457 SEVIGNV 77 41 6.70000 .851
1 09205 HAM 71K6159 LAPOINTE 122 5 47.43000 .851
1 09205 HAM 70K4638 COULOMBE 158 52 6.90000 .851
1 70K4634 ASBESTOS 72K7457 SEVIGNY 0 0 0.00000 .850
1 70K4634 ASBESTOS 09205 HAM 43 16 30.97000 .850

* 51 F24 2.00 0.0 0.01974 .20 .20G-333-1 QLF
1 72K7462 KINGSEY FALLS 72K7463 ST FELIX 0 0 0.00000 2.000
1 72K7462 KINGSEY FALLS 09216 ARTHABASKA 182 54 18.41000 2.000
1 72K7462 KINGSEV FALLS 70K4634 ASBESTOS 283 37 1.02000 2.000
1 70K4634 ASBESTOS 69K4242 PINNACLE 0 0 0.00000 2.001
1 70K4634 ASBESTOS 72K7462 KINGSEV FALLS 76 21 35.35000 2.000
1 70K4634 ASBESTOS 09205 HAM 193 56 4.07000 2.000
1 09205 HAM 69K4242 PINNACLE 0 0 0.00000 2.000
1 09205 HAM 72K7463 ST FELIX 15 50 11.28000 2.000
1 09205 HAM 09216 ARTHABASKA 70 25 24.97000 2.000
1 72K7463 ST FELIX 72K7462 KINGSEY FALLS 0 a 0.00000 2.000
1 72K7463 ST FELIX 69K4240 GALLUP HILL 144 1 10.17000 2.000
1 72K7463 ST FELIX 712055 MALLARD 222 30 17.05000 2.000
1 69K4240 GALLUP HILL 72K7463 ST FELIX 0 0 0.00000 2.000
1 69K4240 GALLUP HILL 69K4242 PINNACLE 54 2431.70000 2.000
1 69K4240 GALLUP HILL 712055 MALLARD 312 40 43.99000 2.000

* 52T33 5.00 5.0 0.0 1969 .20 .20G-213 QLF
2 69K4238 DAIGLE 69K4241 SOUTH DURHAM
2 69K4238 DAIGLE 712055 MALLARD 4
2 69K4241 SOUTH DURHAM 7 12055 MALLARD
2 69K4348 LEMAIRE 712056 WICKHAM
2 712056 WICKHAM 69K4349 BREBOEUF
2 712055 MALLARD 69K4348 LEMAIRE
2 712055 MALLARD 69K4349 BREBOEUF
2 69K4238 DAIGLE 712056 WICKHAM 4
2 712056 WICKHAM 712055 MALLARD 4

* 52G66 1.00 1.2 0.01969 .20 .20G-21 3 QLF
2 712055 MALLARD 69K4346 CHARLES 4
2 69K4348 LEMAIRE 712057 DRUMMOND 4
2 69K4348 LEMAIRE 69K4346 CHARLES 4
2 69K4348 LEMAIRE 69K4349 BREBOEUF 4
2 69K4349 BREBOEUF 69K4346 CHARLES 4
2 69K4349 BREBOEUF 712057 DRUMMOND 4
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1.059
1.263
1.376

5.747
5.643

6.029

Robustness Analysis

2 69K4346 CHARLES 69K4350 HEMMING 4 1697.535
2 69K4346 CHARLES 712057 DRUMMOND 4 5982.974
2 69K4350 HEMMING 712057 DRUMMOND 4 7520.554

* 52T34 3.00 3.0 0.01971 .20 .20FORGUESRL GEOD
2 712056 WICKHAM 712057 DRUMMOND 1 16311.219
2 712056 WICKHAM 712055 MALLARD 1 15903.735
2 712055 MALLARD 712057 DRUMMOND 1 17406.470

* 52T03 5.00 5.0 0.06971 .20 .20G-252 QLF
2 68K2073 BEAUVOIR 70K4632 MARTIN 4 25958.954 13.911
2 70K4632 MARTIN 09207 HEREFORD 4 25114.522 13.516
2 70K4632 MARTIN 70K4631 HATLEV 4 2-5855.606 13.863
2 70K4631 HATLEV 09207 HEREFORD 4 23915.600 12.961
2 09201 VAMASKA 09206 ORFORD 4 51349.497 26.155
2 09201 VAMASKA 69K4238 DAIGLE 4 27087.768 14.439
2 69K4238 DAIGLE 69K4241 SOUTH DURHAM 4 22248.919 12.199
2 69K4238 DAIGLE 69K4239 DUSSAULT 4 23266.547 12.665
2 69K4238 DAIGLE 09206 ORFORD 4 29589.185 15.615
2 09206 ORFORD 69K4239 DUSSAULT 4 17353.488 10.015
2 09206 ORFORD 68K2071 SHERBROOKE 4 25042.285 13.483
2 09206 ORFORD 70K4631 HATLEV 4 _ 32937.049 17.210
2 09206 ORFORD 70K4244 MAGOG 4 13167.713 8.268
2 09206 ORFORD 70K4245 AUSTIN 4 12221.058 7.896
2 09206 ORFORD 08207 OWLS HEAD 4 28074.228 14.902
2 69K4241 SOUTH DURHAM 69K4240 GALLUP HILL 4 12404.558 7.971
2 69K4241 SOUTH DURHAM 69K4239 DUSSAULT 4 2220 1.299 12.177
2 69K4239 DUSSAULT 68K2071 SHERBROOKE 4 27441.676 14.605
2 69K4239 DUSSAULT 69K4240 GALLUP HILL 4 18763.557 10.634
2 69K4239 DUSSAULT 69K4243 LAROCHELLE 4 14067.426 8.634
2 69K4239 DUSSAULT 68K2073 BEAUVOIR 4 26069.828 13.963
2 69K4240 GALLUP HILL 69K4242 PINNACLE 4 17557.730 10.106
2 69K4240 GALLUP HILL 69K4243 LAROCHELLE 4 15392.461 9.182
2 69K4242 PINNACLE 70K4634 ASBESTOS 4 8537.313 6.580
2 69K4242 PINNACLE 70K4633 CHAPMAN 4 30904.295 16.242
2 69K4242 PINNACLE 69K4243 LAROCHELLE 4 22087.271 12.125
2 69K4243 LAROCHELLE 70K4633 CHAPMAN 4 3 1156.248 16.361
2 69K4243 LAROCHELLE 68K2073 BEAUVOIR 4 15954.418 9.419
2 69K4243 LAROCHELLE 68K2071 SHERBROOKE 4 23323.516 12.691
2 68K2073 BEAUVOIR 68K2071 SHERBROOKE 4 12262.201 7.916
2 68K2071 SHERBROOKE 70K4633 CHAPMAN 4 31626.690 16.586
2 68K2071 SHERBROOKE 70K4632 MARTIN 4 22698.097 12.404
2 68K2071 SHERBROOKE 70K4631 HATLEY 4 21747.938 11.971
2 68K2071 SHERBROOKE 08207 OWLS HEAD 4 42989.262 22.068
2 68K2071 SHERBROOKE 70K4244 MAGOG 4 19608.686 11.009
2 70K4244 MAGOG 08207 aWLS HEAD 4 23652.302 12.840
2 70K4244 MAGOG 70K4245 AUSTIN 4 10647.587 7.309
2 70K4245 AUSTIN 08207 OWLS HEAD 4 16056.795 9.459
2 70K4633 CHAPMAN 70K4634 ASBESTOS 4 27291.916 14.534
2 70K4633 CHAPMAN 09205 HAM 4 24683.525 13.3 18
2 70K4633 CHAPMAN 70K4632 MARTIN 4 29571.329 15.609
2 70K4632 MARTIN 70K4635 WEEDON 4 40381.821 20.802
2 70K4634 ASBESTOS 09205 HAM 4 22030.464 12.098
2 09205 HAM 70K4639 MOISAN 4 12790.996 8.122
2 09205 HAM 70K4638 COULOMBE 4 13223.970 8.293
2 09205 HAM 70K4635 WEEDON 4 22105.434 12.133
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9.069

3.669

10.947

3.422
3.160

8.745
1 1.539

7.705
6.882

5.122
9.205

3.932
6.243
5.807
7.789

5.637
4.757

17.262
7.635
10.012

12.115
9.941

2 09205 HAM 09209 THETFORD 4 45751.072 23.415
2 70K4635 WEEDON 70K4638 COULOMBE 4 23696.215 12.862
2 70K4635 WEEDON 71 K61 S4 STORNOWAV 4 20354.838 11.342
2 70K4639 MOISAN 70K4638 COULOMBE 4 8516.299 6.573
2 70K4638 COULOMBE 71 K61 59 LAPOINTE 4 8343.637 6.517
2 70K4636 COULOMBE 66KP 115 CARIBOU E-15 4 18055.555 10.323
2 70K4638 COULOMBE 71 K6155 STE PRAXEDE 4 21190.456 11.718
2 70K4638 COULOMBE 71 K6154 STORNOWAV 4 27127.252 14.458
2 71 K6159 LAPOINTE 71 K6165 VIANNEV 4 20404.081 11.364
2 71 K61 S9 LAPOINTE 66KP 115 CARIBOU E-15 4 17319.615 10.003
2 71 K61 54 STORNOWAV 7 1K6155 STE PRAXEDE 4 20613.706 1 1.458
2 71 K6154 STORNOWAV 71 K6156 SEBASTIEN 4 22553.585 12.337
2 71K6154STORNOWAV 70K4637 GILBERT 4 21159.368 11.704
2 71 K6155 STE PRAXEDE 692012 ADSTOCK 4 14759.889 8.917
2 71 K6155 STE PRAXEDE 692010 GRELOTS 4 18269.250 10.417
2 71 K6155 STE PRAXEDE 71 K6156 SEBASTIEN 4 27938.314 14.837
2 7 1K61 55 STE PRAXEDE 66KP 1 15 CARl BOU E- 15 4 183 1 1.539 10.435

* 52T02 6.12 6.1 0.06971 .20 .20G-252 QLF
2 692010 GRELOTS 692009 HONORE 4 14873.258

* 52G83 1.40 1.7 0.06971 .20 .20G-252 QLF

2 70K4635 WEEDON 70K4633 CHAPMAN 4 19884.200
* 52T43 1.50 3.0 0.0 1969 .20 .20SELLEVAD GEOD

2 692010 GRELOTS 69201 1 BROUGHTON 1 1809 1.670
2 692010 GRELOTS 6920 12 ADSTOCK 1 15021.754

* 52T35 3.00 3.0 0.01971 .20 .20FORGUESRL GEOD
2 712050 BON CONSEIL 712053 ST 2EPHIRIN 1 23639.304
2 712050 BON CONSEIL 712051 ST MAJORIQUE 1 20623.942
2 712050 BON CONSEIL 712057 DRUMMOND 1 13807.056
2 712050 BON CONSEIL 712056 WICKHAM 2 28993.797

2 712051 ST MAJOR IQUE 712057 DRUMMOND 1 8417.650
2 712051 ST MAJORIQUE 712053 ST 2EPHIRIN 1 18224.873
2 712056 WICKHAM 712051 ST MAJORIQUE 1 16545.896
2 7 12055 MALLARD 7 1205 1 ST MAJOR IQUE 1 23942.647

* 52T36 6.00 3.0 0.0 197 1 .20 .20FORGUESRL GEOD

2 712055 MALLARD 712050 BON CONSEIL 1 22647.652
* 52T32 3.70 3.7 0.01965 .20 .20G-22 QLF

2 09201 VAMASKA 08200 ST ARMAND 4 45568.921
2 09201 VAMASKA 652401 FARNHAM 4 18037.649
2 09201 VAMASKA 652402 BROMONT 4 25135.574
2 652402 BROMONT 09206 ORFORD 4 31174.455
2 652402 BROMONT 652401 FARNHAM 4 24932.164

* 52TO 1 5.00 5.0 0.01972 .20 .20G-272 QLF
2 7 1K6 159 LAPa INTE 09205 HAM 4 13226.475 8.295
2 72K7457 SEVIGNV 72K7455 VICTORIAVILLE 4 18125.702 10.353
2 72K7457 SEVIGNY 09216 ARTHABASKA 4 18296.441 10.428
2 72K7457 SEVIGNY 09205 HAM 4 17609.832 10.128
2 72K7457 SEVIGNY 70K4634 ASBESTOS 4 25096.466 13.510
2 71 K61S9 LAPOINTE 72K7457 SEVIGNY 4 12340.221 7.946

* 52G84 1.40 1.7 0.0 1974 .20 .20G-333-1 QLF

2 72K7463 ST FELIX 69K4240 GALLUP HILL 4 18293.961
2 72K7463 ST FELIX 712055 MALLARD 4 16581.838

* 52T04 5.00 5.0 0.0 1974 .20 .20G-333-1 QLF
2 72K7462 KINGSEV FALLS 72K7463 ST FELIX 4 14338.006
2 72K7462 KINGSEV FALLS 70K4634 ASBESTOS 4 20793.098
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.700
.700

.700
.700

1.089

9.609
10.428

16.146

287 4 48.92700

2 72K7463 5T FEL IX 69K4242 PINNACLE 4 16404.403
2 72K7463 ST FELIX 69K4240 GALLUP HILL 4 18293.913

* 52TOS 5.20 5.2 0.0 .20 .20G-257 SGQ
2 09205 HAM 14200 STRATFORD 4 29394.835

* 53??? .80.2 1.0 .20 .20 GEOD
3 09206 ORFORD 09201 YAMASKA

* 51 F25 .70 0.0 0.06971 .20 .20G-252 QLF
1 09208 MEGANTIC 09207 HEREFORD 0 0 0.00000 .700
1 09208 MEGANTIC 70K4632 MARTIN 26 7 1.87000 .700
1 09208 MEGANTIC 70K4635 WEEDON 87 31 3.38000 .700
1 09208 MEGANTIC 09205 HAM 90 44 18.88000 .700
1 09208 MEGANTIC 71 K6154 STORNOWAV 124 27 51.03000 .700
1 09208 MEGANTIC 70K4637 GILBERT 168 57 40.27000 .701
1 09208 MEGANTIC 65K0335 CROIX 193 15 38.35000 .700
1 08207 OWLS HEAD 09206 ORFORD 0 0 0.00000 .700
1 08207 OWLS HEAD 70K4245 AUSTIN 5 45 13.57000 .701
1 08207 OWLS HEAD 70K4244 MAGOG 27 49 43.37000 .700
1 08207 OWLS HEAD 68K2071 SHERBROOKE 33 39 5.61000 .700
1 08207 OWLS HEAD 70K4631 HATLEV 63 36 25.33000 .700
1 08207 OWLS HEAD 09207 HEREFORD 78 22 59.22000 .700
1 09207 HEREFORD 08207 OWLS HEAD 0 0 0.00000 .700
1 09207 HEREFORD 70K4631 HATLEV 21 5 48.54000 .700
1 09207 HEREFORD 70K4632 MARTIN 84 42 29.48000 .700
1 09207 HEREFORD 09208 MEGANTIC 134 49 36.75000 .700

* 51 F26 .70 0.0 0.01965 .20 .20G-22 QLF
1 08200 ST ARMAND 09201 VAMASKA 0 0 0.00000
1 08200 ST ARMAND 652402 BROMONT 29 18 .75000
1 08200 ST ARMAND 09206 ORFORD 65 39 36.76000
1 08200 ST ARMAND 652401 FARNHAM 341 24 53.93000

* 51 F27 .60 0.0 0.00917 .20 .20BIGGERCA GEOD
1 08200 ST ARMAND 09201 VAMASKA 0 0 0.00000 .600
1 08200 ST ARMAND 09206 ORFORD 65 39 37.18000 .600
1 08200 ST ARMAND 08207 OWLS HEAD 99 46 8.20000 .600
1 08207 OWLS HEAD 08200 ST ARMAND 0 0 0.00000 .600
1 08207 OWLS HEAD 09206 ORFORD 101 5 1 26.66000 .600
1 08207 OWLS HEAD 09207 HEREFORD 180 14 25.69000 .600
1 09207 HEREFORD 08207 OWLS HEAD 0 0 0.00000 .600
1 09207 HEREFORD 09206 ORFORD 29 9 31.30000 .600
1 09207 HEREFORD 09205 HAM 90 13 59.17000 .600
1 09207 HEREFORD 09208 MEGANTIC 134 49 35.51000 .600
1 09208 MEGANTIC 09205 HAM 0 0 0.00000 .600
1 09208 MEGANTIC 09209 THETFORD 34 2 22.24000 .600
1 09208 MEGANTIC 09210 LINIERE 9952 16.74000 .600
1 09208 MEGANTIC 09207 HEREFORD 269 15 43.17000 .600
1 09208 MEGANTIC 09206 ORFORD 306 49 50.20000 .600

* 52TOO 5.00 5.0 0.06971 .20 .20G-252 QLF
2 08207 OWLS HEAD 70K4631 HATLEY 4 33747.646 17.599
2 08207 OWLS HEAD 09207 HEREFORD 4 54940.557 27.920
2 09208 MEGANTIC 65K0335 CROIX 4 23201.228 12.631
2 09208 MEGANTIC 70K4637 GILBERT 4 20774.777 11.528
2 09208 MEGANTIC 71 K6154 STORNOWAV 4 30177.294 15.894
2 09208 MEGANTIC 09205 HAM 4 55331.838 28.111
2 09208 MEGANTIC 70K4635 WEEDON 4 33363.916 17.413
2 09208 MEGANTIC 70K4632 MARTIN 4 43778.057 22.450
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* 52T05 5. t 2 6.1 0.06971 .20 .20G-252 QLF
2 09208 MEGANTIC 09207 HEREFORD 4 55407.113 34.344

* 52T37 3.70 3.7 0.01965 .20 .20G-22 QLF
2 08200 ST ARMAND 65240 1 FARNHAM 4 32503.501 12.583
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Table 7.6 NETAN listing of reliability analysis results for real 2D network.

NETAN: Network Analysis (Version 21 Nov 90)
Network Strength Analysis

Piece-Wise Linear Approximation ~-'ConnectedStations

Input network data file: [ong.work.gscl
Real 20 Network. Sigma record commented out. November 16, 1990.

Station Name
Let (OMS), Long (OMS), Ht (m)

Strength in Rotation: Let/Lon, Lat/Ht, Lon/Ht (red)
Obs # and Type

Strength in Shear: Let/Lon, Lat/Ht, Lon/Ht (strai n)
Obs .# and Type

Strength 1n Scale: (strain)
Obs .# and Type

09206 ORFORD
45 18 43.080825 -72 14 30.207541 823.910000
0.2291992303E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

216dir 0 0
0.6780170129E-06 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

408 dis 0 0
0.1048841776E-05

408 dis

2 08200 ST ARMAND
45 2 46.871261 -72 4420.953894 683.340000
0.1787265735E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

406 dis 0 0
0.1887607 108E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00

408 dis 0 0
0.2712184001 E-05

408 dis

3 09201 YAMASKA
45 26 45.361290 -72 52 8.645262 392.290000
0.2439381765E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

225dir 0 0
0.3 1273751 82E -05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

224dir 0 0
0.3791708636E-05

224 dir

4 652401 FARNHAM
45 17 43.897511 -72 57 19.611919 48.700000
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0.5001618512E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
204 dir 0 0

0.3307516240E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
202 dir 0 0

0.3517456435E-05
409 dis

5 652402 BROMONT
45 17 21.072496 -72 38 16.135074 524.090000

-0.1843621826E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
221 dir 0 0

0.1889051795E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
293 dir 0 0

0.24377637 48E-05
408 dis

6 69K4238 DAIGLE
45 29 9.96 195 1 -72 31 36.850628 247.350000

0.295385081 9E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
417 dis 0 0

0.2575428970E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
310 dis 0 0

0.2161766696E-05
310 dis

7 712051 ST MAJORIQUE
45 54 58.86 1380 -72 38 1.304256 52.908000

0.7749727553E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
417 dis 0 0

0.9316988431 E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00
401 dis 0 0

0.5348008518E-05
401 dis

8 712056 WICKHAM
45 46 7.554535 -72 36 21.129165 77.103000
0.7476142592E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

417 dis 0 0
O.2536399125E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00

9 dir 0 0
0.1995342595E-05

310 dis

9 08207 OWLS HEAD
45 3 45.158627 -72 17 52.885732 722.260000
0.2594546255E- 05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00

216 dir 0 0
0.1615778936E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

215 dir 0 0
0.1226679828E-05

408 dis

10 09202 DUSABLE
46 12 37.072604 -73 11 59.806107 104.781000
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0.3101339429E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

225 dlr 0 0
0.39941 9 1380E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

224 dir 0 0
-0.41883 1651 4E -OS

232 dir

11 09204 CARMEL
46 29 58.6 19050 -72 37 39.231578 158.621000

O.2303922089E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
225 dir 0 0

0.45330B9469E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

224 dir 0 0
0.4979524888E-05

224 dir

12 09205 HAM
45 47 28.152005 -7138 0.762182 683.980000
0.241 9608259E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

216 dlr 0 0
0.2157032141 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

224 dir 0 0
0.2422139615E-05

224 dir

13 09207 HEREFORD
45 4 57.225000 -71 36 3.592868 845.530000
0.2897477348E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

216 dlr 0 0
0.6010754979E-06 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

109 dir 0 0
0.7700208902E-06

393 dis

14 09208 MEGANTIC
45 26 5 1.274493 -71 7 13.028206 1059.467500
0.2854532175£-05 0.0000000000£ +00 O.OOOOOOOOOOE+00

216 dir 0 0
0.3987041 417E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00

226 dlr 0 0
0.3929598540E-05

375 dis

15 09209 THETFORD
46 8 48.S 15 181 - 7 1 20 11.437 4 19 666.570000

-0.8307 484869E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
226 dir 0 0

0.9124208779E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
226 dir 0 0

0.1011247600E-04
375 dis

16 09210 LINIERE
45 49 45.115005 -70 22 20.319318 750.290000
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0.2999085842E-05
216 dlr

0.5236910 186E-05
229 dlr

0.5514 t 52198E-05
229 dlr

O.OOOOOOOOOOE+00
o 0
O.OOOOOOOOOOE+00
o 0

O.OOOOOOOOOOE+OO

O.OOOOOOOOOOE+00

Final Report

17 09216 ARTHABASKA
46 3 14.104500 -71 53 16.799699 321.73 t 000

0.11 9 1938293E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
412dls 0 0

0.1587670111 E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
412dis 0 0

0.1798636910E-04
412 dis

18 14200 STRATFORD
45 47 39.761115 -71 15 20.039726 409.870000

-0.1980789843E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
228dir 0 0

0.1777116246E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
228dir 0 0

0.1534542300E-04
422 dis

19 65K0335 CROIX
45 33 46.497791 -70 52 22.787639 464.720000
O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00
000

O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
000

O.OOOOOOOOOOE+00
o

20 66KP115 CARIBOU E-15
46 0 15.971155 -71 24 10.097848 529.160000

-0.5562603072E-OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
136dir 0 0

0.7851738514E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
156 dir 0 0

0.5604775540E-05
391 dlS

21 68K2071 SHERBROOKE
45 20 46.266313 -71 55 33.826884 412.850000
0.2689331661 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

216dir 0 0
0.8202859858E-06 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE +00

88 dir 0 0
0.7052087482E-06

338 dis

22 68K2073 BEAUVOIR
45 27 17.108246 -71 53 53.751 099 280.300000

7. Numerical Examples 101



Robustness Analysis Final Report

0.3 1358585 19E -OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00
47 dir 0 0

0.2486786173E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
83 d1r 0 0

0.2375535604E-05
358 dts

23 692009 HONORE
4S 56 53. 174S 17 -70 50 16.176131 447.770000
O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00· O~OOOOOOOOOOE+00

0 0 0
O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00 O.OOOOOOOOOOE +00

0 0 0
O.OOOOOOOOOOE+00

0

24 692010 GRELOTS
45 59 2.203154 -71 121.673533 381.909000

-0.7953237833E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
152 dir 0 0

0.5792329569E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
158 dir 0 0

O.3850007066E-05
158 dir

25 692011 BROUGHTON
46 8 17.589232 -71 5 49.617509 581.498000
O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

0 0 0
O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

0 0 0
O.OOOOOOOOOOE+00

0

26 692012 ADSTOCK
46 1 46.979836 -71 12 18.397682 685.978000

-0.1230437573E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO
151 dir 0 0

0.9751390846E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO
151 dir 0 0

0.1287876464E-04
395 dis

27 69K4239 DUSSAULT
45 28 4.3 18988 -72 13 51.763295 402.500000
0.4064810816E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

47 dir 0 0
0.1295113346E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

58 dir 0 0
0.1122547988E-05

308 dis

28 69K4240 GALLUP HILL
45 38 6.697228 -72 11 57.261594 319.590000
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0.4348054981 E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

47 dir 0 0

0.4027722157E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

417 dis 0 0

0.48266 141 14E -05
417 dis

29 69K4241 SOUTH DURHAM

45 38 48.365666 -72 21 26.900929 179.840000

0.5526232020E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00

47 dir 0 0

0.4290238242E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00

310 dis 0 0

0.3002360240E-05

310 dis

30 69K4242 PINNACLE

45 43 21.443910 -72 o 41.610936 388.010000

0.3371893597E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

47 dir 0 0

0.2236453538E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

416 dis 0 0

0.1793648331 E-05

416 dis

31 69K4243 LAROCHELLE

45 3 1 43.227302 -72 4 23.562369 304.990000

0.3266237003E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

47 dir 0 0
0.1435730976E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

75 dir 0 0

0.1486183689E-05

350 dis

32 69K4346 CHARLES

45 52 34.266330 -72 27 39.849084 63.770000
0.7867890981 E-05 0.0 OOOOOOOOOE+00 O.OOOOOOOOOOE+OO

11 dir 0 0
0.2237129517E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

317 dis 0 0
O.2443078905E-05

317 dis

33 69K4348 LEMAIRE
45 51 23.401352 -72 34 52.406629 63.700000
0.7749620783E-05 0.0000000000£+00 O.OOOOOOOOOOE +00

417 dis 0 0
0.137837031 OE -05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

317 dis 0 0
0.2543066967E-05

317 dis

34 69K4349 BREBOEUF

45 50 20.776812 -72 29 59.688552 59.560000
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0.7749624063E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

417 dis 0 0
O.1378626132E-OS O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

317 dis a a
0.2543066967E-05

317 dis

3S 69K4350 HEMMING
45 51 46.540782 -72 27 0.785585 85.800000

0.3299870489E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
323 dis 0 0

O.3869778647E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
323 dis 0 0

0.2082584995E-04
34 dir

36 70K4244 MAGOG
45 13 57.380010 -72 7 2.328885 317.400000
0.3125550595E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

48 dir 0 0
0.1775246505E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

366 dis 0 0
O.1629930264E-05

296 dir

37 70K4245 AUSTIN
45 12 7.762168 -72 14 44.998966 290.520000

-0.3892163923E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00
53 dir 0 0

0.3882404481 E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
53 dir 0 0

0.3175721289E-05
365 dis

38 70K4631 HATLEY
45 9 8.363523 -71 53 18.366476 395.940000
0.2849218070E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00

216 dir 0 0
0.13920 14735E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

109 dir 0 0
0.1255207336E-05

330 dis

39 70K4632 MARTIN
45 18 23.8 10822 -7138 31.356562 396.220000
0.2907676552£ -05 0.0000000000£ +00 O.OOOOOOOOOOE +00

216 dir 0 0
0.1293804221 E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE +00

108 dir 0 0
0.1238682002E-05

393 dis

40 70K4633 CHAPMAN
45 34 16.985548 -71 40 44.175426 630.990000
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0.2809255876E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
47 dir 0 0

O.11399S4816E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
393 dis 0 0

O. 1463766489E-05
393 dis

41 70K4634 ASBESTOS
4S 4S 16.869121 -71 54 42.797011 309.870000

-O.6302590378E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
418 dis 0 0

0.4380S94903E-os O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
418 dis 0 0

0.2612630896E-05
412 dis

42 70K4635 WEEDON
4S 38 32.848965 -71 26 42.228373 386.480000
0.2944282103E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

216 dir 0 0
O. 1462416377E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

393 dis 0 0
0.1634337190E-05

393 dis

43 70K4637 GILBERT
45 36 21.037028 -70 58 44.422322 544.460000

-0.1065074819E-04 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE +00
277 dir 0 0

0.1350012469E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
277 dir 0 0

0.7872459230E-05
426 dis

44 70K4638 COULOMBE
45 51 12.417696 -7129 19.031780 438.270000
0.2935917950E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

216 dir 0 0
0.2318051541 E-05 O.OOOOOOOOOOE+00 0.0000000000£ +00

136 dir 0 0
0.2066990702E-05

384 dis

45 70K4639 MOISAN
45 53 56.871982 -71 34 35.977949 569.740000

-0.8540689454E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
141 dir 0 0

0.863860748 1E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE +00
121 dir 0 0

0.7271839907E-05
378 dis

46 712050 BON CONSEIL
45 58 40.678773 -72 22 58.101451 9 1.631 000
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0.77 49729450E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

417 dis 0 0
0.9320161087E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+OO

401 dlS 0 0
0.5348008518E-05

401 dis

47 712053 5T ZEPHIRIN
46 4 47.569228 -72 39 2.842686 25.023000

-0.1111213491E-04 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

401 dis 0 0
0.2 135469992E-04 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

401 dis 0 0
0.1695259473E-04

401 dis

48 712055 MALLARD
45 46 28.667244 -72 24 5.686794 142.128000

0.55031 02695E-05 0.0 OOOOOOOOOE +00 O.OOOOOOOOOOE+00
47 dir 0 0

0.47577247 49E-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+00
417 dis 0 0

0.4607355053E-05
417 dis

49 712057 DRUMMOND
45 54 16.662029 -72 31 35.443646 63.880000
0.7752047465E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00

417 dis 0 0
0.1308349826E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

400 dis 0 0
0.1457931203E-05

317 dis

50 71K6154 STORNOWAV
45 42 45.387397 -71 12 13.529074 483.170000

-0.4225622773E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO
146 dir 0 0

0.4797 120232E-05 O.OOOOOOOOOOE+OO O.OOOOOOOOOOE+00
146 dir 0 0

0.2794709671 E-05
386 dis

51 71K6155 STE PRAXEDE
45 53 51.218892 -71 13 23.166549 364.290000

-0.5422173217£-05 O.OOOOOOOOOOE +00 O.OOOOOOOOOOE+OO
146 dir 0 0

0.3967224861 E-05 O.OOOOOOOOOOE +00 0.0000000000£ +00
151 dir 0 0

0.3178432040E-05
386 dls

52 71K6156 SEBASTIEN
45 45 36.572370 -70 55 19.585027 799.230000
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-0.9159936778E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

146 dir 0 0

0.8023707250E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

146 dir 0 0

0.6881894531 E-05

386 dis

53 71K6159 LAPOINTE
45 54 6.374812 -71 34 14.982987 600.040000

-0.5360384814E-05 O.OOOOOOOOOOE+00 0.000 OOOOOOOE+00

383 dis 0 0

0.9092228940£-05 0.0000000000£+00 0.0000000000£+00

383 dis 0 0
0.1107144575£-04

383 dis

54 71K6165 VIANNEY
46 4 52.998888 -71 37 30.248075 564.280000

-0.7362515097E-05 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

245 dir 0 0
0.1502158604E-04 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

383 dis 0 0

0.2253310123E-04

383 dis

S5 72K7455 VICTORIAVILLE

46 0 41.60 1241 -715546.779541 246.133000

0.0000000000£+00 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+OO

0 0 0

O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

0 0 0
O.OOOOOOOOOOE+00

0

56 72K7457 SEVIGNV
45 56 13.678515 -71 43 17.746867 500.100000

0.6385320893E-05 O.OOOOOOOOOOE+00 0.0000000000£ +00

383 dis 0 0
0.907845S909E-05 O.OOOOOOOOOOE+OO 0.0000000000£+00

412 dis 0 0
0.9200836578E-05

412 dis

57 72K7462 KINGSEV FALLS

45 54 5.080 173 -72 4 40.320796 125.670000

0.1617695032E-04 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

412 dis 0 0

0.1396636558E-04 O.OOOOOOOOOOE+00 O.OOOOOOOOOOE+00

412 dis 0 0

0.1159093134E-04

244 dir

58 72K7463 ST FELIX
4S 47 58.863308 -72 11 28.930794 180.680000
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-0.6568929503E -05
418 dis

0.8513433793E-05
418 dis

0.7365212531 E-05
418 dis

99

7. Numerical Examples

O.OOOOOOOOOOE+OO
o 0
O.OOOOOOOOOOE+OO
o 0

O.OOOOOOOOOOE +00

O.OOOOOOOOOOE+OO
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8. PROPOSED SPECIFICATIONS FOR THE
TOTAL ANALYSIS OF NETWORKS

8. 1 Overall Scheme

Final Report

Based upon the scientific analysis presented in the foregoing chapters, we are now in a

position to propose a methodology to be used in the complete analysis of a 2D network (Table

8.1). The columns contain the various quantities to be assessed, while the rows contain the

various measures and tests to be used. The proposal clearly integrates the standard assessment

tools of random error analysis (covariance analysis - row 1), with that of the robustness (row

2), and external reliability (row 3) analyses. The quantities to be assessed consist of the

estimated positions, model, observables, and functions of estimated positions. The

observation and model measures are used in two modes: preanalysis and postanalysis.

8 . 2 Preanalysis

In standard statistical testing procedures, it is mandatory to predict beforehand the point and

relative confidence regions of the coordinates. This yields a measure of how random errors

will propagate from the observations into the estimated positions.

It is also mandatory to predict how the systematic blunders (if made) will propagate

throughout the network and bias the estimated positions. These can be measured by internal

reliability measures on the observables, Le., the maximum undetectable errors, robustness, and

external reliability measures on the estimated positions. Here, the robustness analysis gives us

a measure of how strong the network is in resisting blunders or systematic errors in the

observations. Recall, that the internal reliability measure is an estimate of how large a blunder

can be before standard statistical testing can catch it, whereas robustness and the external

reliability quantify the effect on the unknown parameters.
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8.3 Postanalysis

Postanalysis, like preanalysis, is extended to take care of the Type II error, that is, the

quantification of what happens when one considers the presence of blunders in the solution.

The standard tests consisting of the null hypothesis Ho (no blunders) must be amended to

include the alternative hypothesis Ha (blunders). In this way, we are able to track down how

our tests are affected by this new dimension.

The tests affected by the consideration of Ha are those listed in VaniCek and Krakiwsky

[1986] as follows:

(a) Univariate testing of an observational series as a unit (Table 13.2).

(b) Univariate testing of individual observations (Table 13.3).

(c) Multivariate testing of observables as model as a unit (Table 13.4).

(d) Multivariate testing of individual observables (Table 13.5).

8 . 4 Other Considerations

The proposed total analysis scheme includes an extended preanalysis activity where both

the Types I and II errors are modelled. We note that for reasons explained in Chapter 5, the

external reliability measures should be used only when robustness cannot be computed because

of some peculiar network configuration.

Robustness of functions of estimated positions, such as computed distances, angles,

possibly coordinate differences, have not been formulated yet It is clear from the theoretical

viewpoint that such measures should exist, but mathematical expressions for these are yet to be

derived.

We reiterate the point here that robustness of a network has to be measured by three

independent primitives. It is not possible to combine these into a single measure. Tolerance

limits and design criteria for robustness will have to be worked out on the basis of a

'reasonable' selection of pO-value (probability of Type II error). This selection requires further

investigation.
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9. CONCLUSIONS, RECOMMENDATIONS, AND
ACKNOWLEDGEMENTS

The collaboration of UNB and U of C researchers on the comparison of reliability analysis

with geometric strength analysis resulted in the conception of a new technique, robustness

analysis, which is a natural merger of the two existing techniques. First experiences with

robustness analysis show that it is a very powerful technique capable of providing a picture of

the analysed network, which is complementary to the one furnished by the standard covariance

analysis. 'Network robustness' (strength, as an ability to resist deformations induced by

undetectable blunders, might be a term more readily understood) is invariant with respect to

coordinate shifts and almost invariant with respect to orientation and scale changes.

Robustness is expressed in tenns of three independent deformation primitives; namely,

robustness in scale (strain), local configuration (shear), and twist (differential rotation). It thus

makes no sense to talk about robustness in general but only about "robustness in scale,"

"robustness in shear," and "robustness in twist." This will sound complicated to a surveyor

uninitiated in the concepts of deformation analysis, where the three primitives are used

routinely. Let us emphasize here that the full description of a defonnation cannot be achieved

with fewer than three primitives. If we wish to deal with network strength meaningfully, then

we have to accept this fact and learn to live with it. It seems to us that the introduction of

robustness analysis will require some educational effort aimed at the surveying community.

Specifically, a guide/manual will have to be written with the aim to assist in the transfer of

knowledge.

We recommend that robustness analysis be used side-by-side with the standard covariance

analysis for a complete network analysis in the future. The Canadian federal specifications for

horizontal control networks should be extended to include robustness analysis. It should be

mentioned here that under special circumstances, the 'external reliability' measure discussed in
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Chapter 3 would have to be used (in case of geometrical singularity encountered at a network

point or set of points) and provisions should be made for this in the specifications.

As we have seen in Chapter 7, it is not always easy, or even possible, to guess at the

reason behind a specific weakness in the network from the network configuration alone. More

experiments should be conducted with robustness analysis, and more experience gained. with

practical application as well as the interpretation of robustness analysis results, particularly

before specific values of robustness tolerance limits can be imposed through federal

specifications. Some general criteria, however, can be fonnulated already, and these were

spelled out in Chapter 8. A better graphical representation of robustness primitives is a must.

OUf investigations were definitely hindered by the unavailability of a decent graphics package

on the UNB Vax computer system.

A strategy will have to be worked out on how to deal with the two kinds of singularities

that may arise in robustness analysis. While the generic singularity associated with the extreme

weakness of the network has so far been shown by 'large' values of the robustness primitives,

geometrical singularities have been simply eliminated by leaving out the singular points. More

worrisome is the case of geometrical near-singularities such as the one encountered at station

HEMMING in the analysis of the real network in Chapter 7. A measure of ill-conditioning

based either on confidence regions for strength primitives or the value of the detenninant in the

least-squares fitting of planes in the determination of strain matrices will have to be devised.

Some refinement of the reliability analysis as the first part of robustness analysis is called

for in order to understand better the role of the probabilities (significance levels) used in the

univariate and multivariate tests and their impact on the non-centrality parameter A.a. The total

picture of how those probabilities work together should be assembled and illustrated on

numerical examples to be shown in the guide/manual as mentioned above. Even though the

appropriate selection of ~O-probabilitywas not necessary in our investigations - ~o affects

only the scale of the robustness primitive plots - it will become necessary for fonnulating the

robustness tolerance limits. This point thus deserves further investigation.
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