Glacial isostatic adjustment following the last glacial period is the dominant source of crustal deformation in Canada out of the Rocky Mountains. The present-day vertical component of motion associated with this process may exceed 1 cm y⁻¹ and is being directly measured with the Global Positioning System (GPS). A consequence of this steady deformation is that high accuracy coordinate estimates at one epoch may not be comparable with those at another epoch. For example, precise point positioning (PPP) methods provide coordinates at the epoch of observation while NAD83, the officially adopted reference frame in Canada and the US, is expressed at some past reference epoch. Thus, we reconcile PPP results and different realizations of NAD83 adopted by the provincial geodetic agencies in Canada and the U.S. to empirically represent crustal motion and need to be propagated back to the reference frame and resolved with 0.25 deg spatial sampling. This means we need to reconcile PPP results and different realizations of NAD83 at the epoch of observation while using the propagated PPP to 0.25 deg spatial sampling for IGS defined as a time-dependent 7 parameter transformation from ITRF and may exceed 1 cm y⁻¹ and is being directly measured with the Global Positioning System (GPS). A consequence of this steady deformation is that high accuracy coordinate estimates at one epoch may not be comparable with those at another epoch. For example, precise point positioning (PPP) methods provide coordinates at the epoch of observation while NAD83, the officially adopted reference frame in Canada and the US, is expressed at some past reference epoch. Thus, we reconcile PPP results and different realizations of NAD83 adopted by the provincial geodetic agencies in Canada and the U.S. to empirically represent crustal motion and need to be propagated back to the reference frame and resolved with 0.25 deg spatial sampling. This means we need to reconcile PPP results and different realizations of NAD83 at the epoch of observation while using the propagated PPP to 0.25 deg spatial sampling for IGS-defined transformations. We reconcile PPP results and different realizations of NAD83 at the epoch of observation while using the propagated PPP to 0.25 deg spatial sampling for IGS-defined transformations.