Observing Glacial Rebound Using GPS

Giovanni Sella and Seth Stein
Northwestern University

Michael Craymer
Geodetic Survey Division, Natural Resources Canada

Thomas James and Stephane Mazzotti
Geological Survey of Canada, Natural Resources Canada

Timothy Dixon and Shimon Wdowinski
University of Miami

Roy Dokka
Louisiana State University

AGU-CGU Joint Meeting, Paper G33A-03
Montreal, May 17-21, 2004
Funding

National Science Foundation

U.S. Geological Survey
National Earthquake Hazard Program

Natural Resources Canada
Geodetic Survey Division
Geological Survey of Canada
Natural Hazards and Emergency Response Program
Climate Change Program
Canadian Geodetic Service
Glacial Isostatic Adjustment (GIA)

GIA is the earth’s response to the removal of the great ice sheets

Last glacial maximum 18,000 yrs ago

Since then, ice melted back

http://jesse.usra.edu/archives/jesse01-300-01/
Small motions resulting from "post-glacial rebound" stem from the fact that the mantle below the earth's crust flows like a super-viscous fluid -- much, much stickier than road tar or maple syrup.

The mantle is still flowing to fill areas underneath the places where the heavy ice sheets pushed out the mantle 18,000 years ago.

GPS can detect motions as small as 1 mm or 1/25 of an inch per year.
Other Constraints on GIA in North America

Raised Beaches
Successive beaches left as fossil shorelines, recording uplift history

Tide Gauges
Tide gauge at Churchill shows land rising today

Within 1,500 km of Hudson Bay only 1 T. G.
Studies give insight into ice ages & climate, the nature of the earth’s interior, and perhaps earthquakes within North America.

Why study GIA? - Climate

- Extent of ice sheets can be measured.
- Thickness of ice sheets estimated from relative sea level curves and water volume budgets.
- Volume of ice 25-34 M km3 equivalent to 50-70m sea level change.
- Ice thickness history poorly known.
Why study GIA? - Earth’s interior

- Measuring GIA yields an estimate of the viscosity (gooeyness) of the earth’s mantle, and how it varies with depth and from place to place.

- Viscosity gives insight into the temperature and composition of the earth, and hence how our planet evolved.
Why study GIA? - Earthquakes

- GIA may be cause of some earthquakes within plate interiors
- Most earthquakes happen on boundaries between plates
- Unclear what causes the others
- GIA has long been suspected as one possible cause
Why study GIA? - Earthquakes

GIA may be cause of some earthquakes within plate interiors:

Stein et al [1979] - coasts of Atlantic Canada, NE US
Stein et al [1989] - other glaciated coasts (Greenland, Beaufort Sea, Norway)
James & Bent [1994]; Wu & Johnston [2000] - St. Lawrence Valley
Grollimund and Zoback [2001] – New Madrid

Hard to tell how significant an effect this might be until we know how large GIA motions are

Damage from 1929 Grand Banks, Newfoundland M 7.2 earthquake (tsunami caused 27 deaths)
Why Space Geodesy* - GPS?

See what’s happening NOW

Simple
Go to a point, measure position with space technology
Wait
Remeasure position
Calculate velocity (repeat earlier step as needed/funded)

Cheap and mobile

In many cases, a permanent GPS site does this daily

Compare results to independent geologic data

* Geodesy - science of the earth’s shape (surveying)
Global Positioning System

24 Satellites
5-8 overhead most of the world

Measuring distances and triangulating

3 satellites unique position
4 satellite necessary to correct receiver clock errors

GPS Satellite
Orbits
Clocks

Propagation
Ionosphere
Troposphere (wet & dry)

GPS Receiver
Clocks
Multipath
Antenna phase center variation

3-D Crustal Motion
Tectonic motion
Ocean tides
Solid earth tides
Subsidence
Glacial isostatic adjustment
Monument stability
Accuracy of GPS velocities

Precision of GPS velocity estimates increases over time by fitting a weighted least squares line to daily positions.

The velocity error for this time series is only 1 mm/yr.
Uncertainties decrease with length of measurements.
GPS Sites

Continuously operating sites in Canada (NRCan) and US (National Geodetic Survey and other agencies)

Critical constraints provided by episodically occupied sites in Canada (NRCan Canadian Base Network)

Network installed primarily for survey control purposes, but also provides unparalleled new tool for basic science
Detecting GIA using GPS

GPS vertical velocities

UPLIFT

SUBSIDENCE
GPS Observed Vertical Velocities

Clear pattern of positive velocities in and around Hudson Bay that decreases going southwards to zero (hinge line), beyond which velocities are initially negative and then rise to near zero.
Great Lakes Water Gauges Show Same Pattern

Geodetic Survey Division, NRCan
GIA affects water levels on the Great Lakes and Lake Winnipeg. As the northern shores rise, water levels are steadily decreasing. Conversely, as the southern shores sink, water levels are rising. This impacts industries and homeowners along the shores of the Great Lakes and also safe navigation and the international management of water levels.

Note: Average water level doesn’t change
What’s Next?

Add more sites, especially in northern Canada

Understand the horizontal motions (tricky, since smaller) that will give insight into the ice load history, earthquake-generating potential, and mantle viscosity

Improve mathematical models of all these