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ABSTRACT

As a result of the growing popularity of microcomputers and
programmable calculators with large storage capacitiesg, it
is now feasible to directly compute the azimuth of the Sun
and Polaris given only the time of observation and the ob-
server's astronomic latitude and longitude. The methods
needed to calculate the Sun's coordinates are based upon the
same theory of motion of the Earth around the Sun that 1is
presently used to produce The Astronomical Almanac (prepared
jointly by the United States and British Nautical Almanac
Offices). The popular ephemerides used by most land surve-
yors (i.e. The Star Almanac and the K&E Solar Ephemeris)-Ca-
nadian Ministry of Energy, Mines and Resources are compiled
from the fundamental ephemeris. The major purpose of this
report is to present the expressions necessary to compute
the Sun's astronomical coordinates to the same precision
currently available in the fundamental ephemeris. The con-
ventional method of updating Polaris' coordinates is also
outlined for completeness. A computer program incorporating
these expressions in the determination of astronomical azi-
muth from observations on the Sun or Polaris is provided in

the Appendix.
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1. INTRODUCTION

The fundamental ephemerides of the Sun (The Astronomical Al-
manac - formerly The Astronomical Ephemeris or The American
Ephemeris) have, until recently, been the only source of po-
sitional coordinates available to most surveyors. Attempts
have been made to simplify astronomical data using simple
polynomials (e.g. Sinclair [1975], The Star Almanac and the
Almanac for Computers), Chebyshev polynomials (e.g. the Al-
manac for Computers) and Fourier series (e.g. Bennett
[1978]). From 1977 onwards, both the United States and
British Nautical Almanac Offices began supplying polynomial
coefficients; the former in the Almanac for Computers and
the latter in The Star Almanac.

Except when two or more sets of data are required during
a short interval of time, the polynomial expressions can‘be
as inconvenient and cumbersome as interpolation from tables.
To retain the required accuracy, the polynomials require
many terms and/or are limited to relatively short periods of
time. Table 1 compares some of the currently available
sources of polynomial coefficients with respect to the num-
ber of terms, span of validity and maximum error.
It can be seen from this Table that the polynomials may not
be any more convenient than interpolation from tables. From
the point of view of high precision, the large number of
terms (as many as 36 for Greenwich Apparent Sidereal Time)

create as much work and more potential sources of error when




TABLE 1

Comparisons of polynomial expressions

No. of Span of Max
Terms Validity Error
Star Almanac:
R(GHA Y1) 2 324 0vs
E(GHA Sun) 5 32d 175
Dec 5 324 075
Semi-Diameter 2 32d 0v4
Almanac for Computers
N.A. Series:
GHA 6 32d 172
GHA Sun 6 324 172
Dec 6 32d 172
Semi-Diameter 6 3a2d 076
Almanac for Computers
A.E. Low Precision:
GAST(Ohr UT) 10 lyr 05
RA 22 lyr 9v0
Dec 22 lyr 370.
Semi-Diameter 22 lyr 0705
Almanac for Computers
A.E. High Precision:
GAST(Ohr UT) 36 95d ovo2
RA 22 85d or3
Dec 22 95d 071
Semi-Diameter 22 954 oro2
- 2 -
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inputing all of the required coefficients. 1In addition, ap-
proximations in both The Star Almanac and the Almanac for
Computers (NA series), containing five and six terms respec-
tively, are limited to only a 32 day time span, resulting in
impractical applications for infrequent users. Similar ar-
guments can also be made against the use of Fourier series.

The ideal method of determining the Sun's coordinates
would only require the input of the time of observation and
would not be restricted to specific time periods. This
criteria could be satisfied by deriving the Sun's ephemeris
from the same theories of celestial mechanics upon which the
fundamental ephemerides are based. However, the United
States Nautical Almanac Office has rejected this idea stat-
ing [United States Nautical Almanac Office, 1979]:

Expressions for direct calculations must take the
form of mathematical approximations since the pre-
cise data contained in the ephemerides are calcu-
lated from extensive theories which are not readi-
ly adaptable to the majority of astronomical and
navigational applications.

Considerable advances in the computer field now require
this argument to be reconsidered. Meeus [1962] has taken
the first step in this direction by compiling and deriving
expressions and algorithms for many astronomical problems,
including the calculation of the coordinates of the Sun.
However, the precision resulting from Meeus's expressions is
unacceptable to users such as land surveyors. More recent-
ly, Bennett [1980] has given a similar algorithm with great-

er precision,




The determination of the coordinates of Polaris (right
ascension and declination) is performed in the traditional
manner by updating the coordinates from one epoch (1950.0)
to another. This method has been well documented by many
authors (e.g. Mueller [1969]) and will therefore only be
outlined briefly here for completeness.

It is the aim of this report to describe the expressions
and algorithms required for the computation of the astronom-
ical coordinates for both the Sun and Polaris. These will
provide both high precision and a length of validity limited
only by significant changes in the system of astronomical
constants. The expressions may then be utilized in specific
computer programs for azimuth determination. An exampie of
such a program is provided in the Appendix.

Throughout this report the units are explicitly given‘at
the end of equations for which coefficients determine the
units. Note that distances expressed in astronomical units

(AU) are defined by [Stein, 1982]:

1 AU = 1.49597870 x 10'! metres.
It should also be brought to the readers attention that the
figures depicting the celestial sphere are actually distort-
ed to aid in their construction. This distortion follows
the same pattern as many introductory texts in positional

astronomy (e.g. Mueller [1969]).
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2. COORDINATE SYSTEMS AND TRANSFORMATIONS

A brief description of geocentric coordinate systems and
transformations used in this report is presénted in this
Chapter. Due to their great distances, celestial objects
are generally considered to be projected onto a sphere of
unit radius referred to as the celestial sphere. Conse-
quently, the location of such objects may be expressed in a
suitably chosen two-dimensional, curvilinear coordinate sys-
tem. These coordinate systems are the Ecliptic, Right As-

cension, Hour Angle and Horizon systems.

2.1 ECLIPTIC SYSTEM

The coordinate axes defining this system are illustrated in
Fiqure 1., The origin of this system is at the centre of
mass of the solar system, usually considered to be at thé
centre of the Sun. The x-axis points in the direction of
the vernal equinox ( Y- see 3.2) and the z-axis is aligned
perpendicular to the ecliptic, defined as the plane contain-
ing the orbit of the Earth-Moon system around the centre of
mass of the solar system [Mueller, 1969]. The y-axis is
chosen so as to make the system right-handed. The North Ec-
liptic Pole (NEP) is located at the intersection of the z-
axis with the celestial sphere and the angle of intersetion
of the ecliptic and equator is called the Obliquity of the

Ecliptic (e).



The curvilinear coordinates of a point in this system are
the ecliptic latitude (B) and longitude (A). Their defini-
tions are evident from Figure 1, where 's' represents an ar-

bitrary point.

NEP

ECLIPTIC

Figure 1: The ecliptic system

2.2 RIGHT ASCENSION AND HOUR ANGLE SYSTEMS

This system is illustrated in Figure 2. The origin of this
system is at the centre of mass of the Earth. As for the
ecliptic system, the x~axis points in the direction of the
vernal equinox (Y). The z-axis is aligned with the spin

axis of the Earth and the y-axis is oriented to make the
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system right-handed. The North Celestial Pole (NCP) is at

the intersection of the z-axis with the celestial sphere.

ECLIPTIC

EQUATOR

L

Figure 2: The right ascension system

The vernal equinox is the point of intersection of the
ecliptic and the celestial equator where the apparent Sun
crosses the ecliptic from south to north.

The curvilinear coordinates of a point are the right as-
cension (%) and declination (8). Their definitions are ap-
parent from Figure 2, where 's' represents an arbitrary
point. Alternatively, the hour angle (h) may be used in-

stead of the right ascension (see Figure 3). The relation-



ship between h and @ is given in 2.4.2. Note that this hour
angle system is left-handed, where the x-axis points in the

direction of the observer's local meridian.

NCP

Figure 3: The hour angle system

2.3 HORIZON SYSTEM

This system is illustrated in Figure 4 where the origin is
at the point of observation (i.e. on the surface of the
Earth). The z-axis points in the direction of the obser-
ver's zenith (Z) and the y-axis makes the system left-hand-

ed.
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NCP

HORIZON

Figure 4: The horizon system

Due to the great distances involved with astronomic ob-
servations, the origin of this system is usually considered
to be at the centre of mass of the Earth. The effect of
this on the curvilinear coordinates is outlined in Chapter
o

The azimuth (A) and altitude (a) or zenith distance (z)
are the curvilinear coordinates as seen in Figure 4. The
angle between the NCP and z-axis is the astronomic latitude
(%) of the observer and should not be confused with the ec-
liptic latitude (B). The azimuth (A) and altitude (a) or
zenith distance (z) define the curvilinear coordinates in

this system as can be seen from Figure 4.




2.4 TRANSFORMATIONS BETWEEN SYSTEMS

In order to simplify these transformations, the coordinate
systems are all considered to be geocentric; The correc-
tions to this presumption are outlined in Chapter 9. Furth-
ermore, matrix algebra and cartesian coordinates are em-
ployed here. The right-handed, 3 x 3, orthogonal rotation
matrices about the x, y and z axes, denoted by Rx, Ry and Rz
respectively, are defined by:

1 0 0

Rx ( ©) 0 cosf sin®é

| 0 -sin6 cos® |
[ cose 0 -sine ]

Ry ( o) 0 1 0

| sin®8 0 cos 6 |
cose sine 0 ]

Rz (9) -sing cose O

o o0 1] .

2.4.1 Ecliptic and Right Ascension

It can be seen that the only difference between the two sys-
tems is a rotation around the x-axis (the axis containing
the vernal equinox and the origin) by an amount equal to the
obliquity of the ecliptic (e).

On the celestial sphere the cartesian coordinates of both
systems may then be expressed in terms of the curvilinear

coordinates as:

_10_
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x| [~ cosB cosA |
y = cosB sin}
| 2 |Ecl | sinB §
[ x| [ cosd$ cosa ]
y = | cosbé sina
| z |RA | sing B

The rotation matrix, Rx, is used to rotate either system

about the x-axis by the angle €:

1 0 0
Rx(e) = 0 cose sine
0 -sine cos € .

The transformations between the two systems may then be

performed as follows:

[ x | [ x ]
y = Rx(-¢)| y
| z |RA | 2 [Ecl ,
_x" -y ]
y = Rx(+e)| y
| z |Ecl | 2 |RA .

Inserting the curvilinear coordinates and performing the ma-
trix multiplication, the following relationships are der-
ived:

Ecliptic to Right Ascension

cos§ cosa COoS B cos A
cosé sina = cos B sinAcose - sinB sine
sin § cos Bsin A sine + sinf cose

a = arctan(tani cose - tan B8 sin e sec\ )

- 11 -



§ = arcsin(cosg sinA sine + singcos¢d ,

Right Ascension to Ecliptic

cosB cosi cCO0S § COS a

cosB sini = | cosssinacose+ sins sine

sing -cos § sina sine+ sing cose
A = arctan(tana cose + tan § sine sec o

™
n

arcsin(-cos § sin asin e+ sind cose) .

2.4.2 Right Ascension and Horizon

The relationships between these systems are normally derived

through the hour angle system. In terms of the curvilinear
coordinates, the cartesian coordinates may be expressed as:
X cosa cosA sinz cosA

sinz sinaA

Y = cosa sinA
z |HOR sina coSsz 8
As seen in Figures 2 and 3 the conversion from the hori-

zon system to the hour angle system requires first a rota-
tion around the z-axis of 180 °and then a rotation of
(*—96)) about the y-axis. The subsequent conversion to the
right ascension system requires a change of handedness, Py,
and a negative rotation of an amount equal to the local ap-
parent sidereal time (LAST - see next section). In matrix

notation this is given as:

X b 4
y | = Rz(-LAST)PyRy(90 -¢)Rz(180°)| y
Z |RA z |Hor

and the inverse is:

_12_
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X X
[o]
y = Rz(180° )Ry(?-90 )PyRz(LAST)| y
Z |Hor 'z RA .

Here, the change of handedness, Py, is given as a reflection

of the y-axis:

1 00
Py = 0-10
0 01 .

After the appropriate substitutions the following equations
may be obtained:
Horizon to Hour Angle

cos § sinh cosz cos ® - sinz cosA sin?

cos 6§ sinh = |-sinz sinA

sin & cosz sin ¢ + sinz cosA cos¢

o
]

arctan[sinA / (cosA sin¢ - cos ¢cotz)]

(=]
]

arcsin(cosz sin® + sinz cosA cost) ,

Hour Angle to Horizon

sinz cosA sinéd cos ¢ - cosé cosh sin¢
sinz sinaA = |-cos § sinh
cosz sin § sin¢ + cosé cosh cos¢
A = arctan[-cos §sinh / (siné cos® - cos 8§ cosh sin?®)]
= arctan[sinh / (cosh sin¢® - cos® tané)]
z = arccos(sin 8sin ¢+ cos § cosh cos®) ,

Hour Angle to Right Ascension
a = LAST -~ h ,
Right Ascension to Hour Angle

h = LAST - o« ,

_13_.



3. TIME SYSTEMS
There are two basic terms commonly used to define time: the
interval and the epoch. The interval is the amount of time
that has elapsed between two events., The epoch is the am-
ount of time that has elapsed between a specific reference
event, called the fundamental epoch,and the occurence of
another event. Strickly speaking, the epoch may be consid-
ered as a time interval referred to a fundamental epoch.
The following systems of time are merely different time
scales with which the time interval is measured. The four
basic time scales in use today are based upon the following
natural, observable phenomena:
1. Ephemeris Time: based on the orbital motions of the
planets.
2. Sidereal Time: based on the diurnal rotation of tﬁe
Earth with respect to the stars.
3. Solar Time: based on the diurnal rotation of the
Earth with respect to the Sun.
4. Atomic Time: based on the electromagnetic oscilla-
tions produced by the quantum transition of an atom

of Cessium 133 [Thomson, 1978].

_14_
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3.1 EPHEMERIS TIME

This is the theoretically uniform time system based upon the
variation of the Sun's geometric, ecliptic iongitude.
Ephemeris Time (ET) is the independent variable in the orbi-
tal theories of the planets and closely agrees with Univer-
sal Time (see 3.3) although no specific relationship exists
between the two systems. Ephemeris Time is used as the time
argument for a number of tables in the fundamental ephemer-
ides.

Newcomb's [1898a] theory of the apparent motion of the
Sun has been adopted by the 1.A.U. as the basis for this
system. The origin and rate of Ephemeris Time were there-
fore chosen so as to agree with Newcomb's expression for the
mean ecliptic longitude of the Sun, L, referred to the mean

equinox of date [N.A.O., 1961]:

2
L = 279.6966778 + 36000.7689250 Te + 0,0003025 Te (deg) ,

where Te is the interval of Julian ephemeris centuries of
36525 days that have elapsed since the fundamental epoch of
Ephemeris Time; 1900 January 0.5d4 ET.

The fundamental epoch has been more formally defined by
the I.A.U. in the following manner [International Astronomi-
cal Union, 1960]:

Ephemeris time is reckoned from the instant, near
the beginning of the calendar year AD 1900, when
theogeometric mean longitude of the Sun was

279°41'48704 at which time the measure of ephemer-
is time was 1900 January 0.5d4 precisely.

_15_



The Julian ephemeris date (JED) corresponding to this ep-
och is JED 2415020.0, from which the interval of Julian
ephemeris centuries, Te, elapsed from this date can be ex-
pressed in terms of the Julian ephemeris date as:

Te = (JED-2415020.0)/36525 (Julian ephemeris centuries)

3.2 SIDEREAL TIME

This time system is based on the diurnal motions of the
stars and is therefore a direct measure of the rotation of
the Earth. The epoch of Sidereal Time, ST, is defined as
the hour angle of the vernal equinox. When measured from
the Greenwich meridian (i.e. the meridian of zero astronomic
longitude) it is denoted as Greenwich Apparent Sidereal
Time, GAST, and when measured from the local meridian it is
called Local Apparent Sidereal Time, LAST. Apparent Sidére—
al Time, AST, corresponds to the hour angle of the apparent
vernal equinox. The relationship between Local and Green-
wich Sidereal Time is expressed as follows:

GAST

LAST + Aw i

GMST

L]

LMST + Aw ’
where A denotes the astronomic longitude of the local meri-
dian west of the Greenwich meridian (not to be confused with
ecliptic longitude).

Mean Sidereal Time, MST, is defined as the hour angle to
the mean vernal equinox. The difference between Apparent

and Mean Sidereal Time (i.e. between the apparent and mean

_16_
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vernal equinoxes) is known as the Equation of the Equinoxes,
Eq.E. This difference is due to nutation (see Chapter 8)
and is sometimes referred to as Nutation ianight Ascension.
The Equation of the Equinoxes can be‘expressed'in these
terms as:
Egq.E = AST - MST = AY cos ¢ ,

where AY is the nutation in ecliptic longitude. Greenwich
Apparent Sidereal Time, GAST, and Greenwich Mean Sidereal
Time, GMST, are the commonly tabulated quantities.

The variable, non-uniform rate of rotation of the Earth
consequently renders this system impractical for measuring

precise intervals of time.

3.3 SOLAR TIME

Solar time is classified as to whether it is based upon fhe
motion of the apparent Sun or Newcomb's mean Sun,

Apparent Solar Time, AT, is defined by the apparent vari-
able motion of the Sun as seen by an observer on the Earth.
The epoch of AT is defined as 12h + local hour angle of the
apparent Sun. Greenwich Apparent Solar Time, GAT, is refer-
red to the Greenwich meridian but because of its non-uni-
formity, the hour angle is more commonly utilized to de-
scribe the location of the apparent Sun.

Mean Solar Time, MT, is the basis of all civil timekeep-
ing. It is based upon the uniform, diurnal motion of the
mean Sun whose right ascension, referred to the mean equinox

of date, is given by Newcomb [1898a] as:

_17_



a = 18.646066 + 2400.051262 Tm + 0.000026 Tm2 (hr) ,
where Tm is the interval of Julian centuries of 36525 mean
solar days that have elapsed since the fundamental epoch of
Universal Time; 1900 January 0.5d UT.

The definition of the epoch of MT is analogous to Appa-
rent Solar Time (i.e. 12h + local hour angle of the mean
Sun). Greenwich Mean Solar Time, GMT, or Universal Time,
UT, is referred to the Greenwich meridian as 12h + Greenwich
hour angle of the mean Sun.

The difference between Apparent and Mean Solar Times is
called the Equation of Time, Eq.T, and is defined as:

Eq.T. = AT - MT = GHAa - GHAm = 4m - ¢a ,
where 'a' refers to the apparent Sun and 'm' to the mean
Sun.

Different classifications of Universal Time arise froﬁ
considerations of the variable rate of rotation of the Earth
and polar motion, i.e. the motion of the instantaneous spin
axis with respect to the solid Earth. UTO is observed Univ-
ersal Time with no corrections applied. UTl is corrected
for polar motion and thus represents the Earth's true angu-
lar velocity. This is the time that is used for precise as-
tronomical calcualations. UT2 is corrected for both polar
motion and seasonal variations in the Earth's rotational
speed. Although relatively uniform, UT2 is still subject to
secular variations due to tidal forces and internal process-

es within the Earth [Thomson, 1978]. Since about 1962, UT2

_18_
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has been superceded by Coordinated Universal Time, UTC,
based on atomic clocks, as the most commonly broadcast time

scale.

3.4 ATOMIC TIME

The desire for a more stable time system led to the intro-
duction of atomic clocks in 1955. The duration of the atom-
ic second was defined in 1967 by the International Committee
for Weights and Measures as [Robbins,1976]:
...the duration of 9192631770 periods of radia-

tion corresponding to the transition between the

two hyper-fine levels of the fundamental state of

the atom of Cessium 133.

Various systems of atomic time have been in use since
1955 but the internationally agreed upon system, known as
International Atomic Time, TAI, was not introduced until-
1972 [N.A.0., 197%a]. Coordinated Universal Time, UTC, is
offset from TAI by an integral number of seconds as estab-
lished also by international agreement. UTC is intentional-
ly offset from TAI to keep it within 059 of UT1. Today
(1983), TAI-UTC=20°.

The Bureau Internationale de Heure, BIH, is responsible
for maintaining both TAI and UTC. Weekly publications by
the BIH (e.g. B.I.H. [1983]) inform users of the current re-

lationships between the time systems.




3.5 JULIAN DATES

It is often convenient to express an epoch in terms of its
Julian date (JD), which is the interval of time in days and
fractions of days since 4713 B.C., Jan. 1.5 days UT. This
allows one to quickly determine the number of days between
two epoch. Of importance for the calculations to be per-

formed here are the ¢ following Julian dates.

Julian Date Epoch

2415020.0 1900, Jan. 0.5 days UT/ET
2433282.423 1950.0 (Bessilian Date)
2442413.478 1975.0 (Bessilian Date)

The Julian date may be computed for any epoch from the
following algorithm from Meeus [1962]. Given the year (Y),
month (M), day (D) and time (UT), the corresponding Julian
date can be computed as follows:

IfM=1lorM=2, Y=Y-1 and

M=M+ 12
A = INT(Y/100) . |
B=2-A+ INT(A/4) |
JD = INT(365.25 ¥) + INT(30.6001(M+1l)) + D l |
+ UT/24 + 1720994.5 + B, '
where INT denotes the integer operation (i.e. truncation). l ' |
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3.6 RELATIONSHIPS BETWEEN TIME SYSTEMS

3.6.1 Ephemeris and Universal Time

There is no specific relationship between these systems.

The difference is determined from astronomical observations
on the planets (usually the moon) and is defined as:

AT = ET - UT .

This difference can be obtained from the publications of the
BIH and United States Naval Observatory to one month in ad-
vance with a precision of 031. More precise values must be
determined from the publications of the B.I.H. one month in

arrears.

3.6.2 Sidereal and Universal Time

The relationship between epochs may be determined from the
following expression given by Newcomb [1898a] and adopted by
the I1.A.U.:

GMST UT + 12h + %m

UT + 6.646066 + 2400.051262 Tm + 0.000026 Tm2 (hr),
where Tm is the interval of Julian centuries elapsed since
1900 January 0.5d4 UT.

The conversion between intervals is determined from the
ratio of the lengths of the sidereal and mean solar day and
is expressed as [Mueller, 19691]:

"10)

ST / UT = 0.997269566414 - (0.586x10 Tm .
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3.6.3 Atomic and Ephemeris Time

The difference between the duration of the atomic and ephem-
eris second is insignificant. Therefore, the difference
between TAI and ET is a constant [N.A.0., 1979a]:

ET - TAI = 32718 .

The difference between epﬁemeris time and UTC can then be

given as:

ET - UTC = 32718 + (TAI - UTC) .
Today (1983), ET-UTC=54718, but as mentioned in 4.4, the
difference (TAI-UTC) is periodically adjusted by an integral

number of seconds.

3.6.4 Atomic and Universal Time

As stated above, the difference between UTC and UTl is kept
within 059, The broadcasting stations encode the differ;
ence, DUT1 = UT1-UTC, within the time signal to an accuracy
of 031, DUTl is published by the BIH one month in advance
to a precision of 051, More precise values are also pub-

lished one month is arrears.

_22—

- wy oWy oW W Wy W W W N

— oy ey oy oy oy owy oy

q




4, THE ORBITAL MOTION OF THE EARTH
The laws governing planetary motion in the solar system were
discovered by Kepler. The first of these laws states that
the orbit of a planet around the Sun is an ellipse, the po-
sition of the Sun being at a focus of the ellipse. It is
known that the equation of an ellipse is [Smart, 1960]:

R

p/ (1 + e cosv)
where;
R = radius vector of orbit
e = ((az—bz)/az)ll2 = eccentricity of orbit

mean radius of orbit

p = a(l-e?)
a = semi-major axis of orbit

b = semi-minor axis of orbit

v = A-w = true anomaly

A = ecliptic longitude of planet

w

ecliptic longitude of perihelion
These quantities are illustrated in Figure 5.

Kepler's second law states that the radius vector sweeps
out equal areas in equal times and the third law asserts
that the square of the orbital period is proportional to the
cube of the length of the semi-major axis.

Theoretically, Kepler's second law permits the determina-
tion of the position of a planet in its orbit, given the
semi-major axis, the eccentricity, the orbital period, P,
and the time, t, at which the planet passed through perihe-
lion [Smart, 19601].

_23_



TPERIHELION

Figure 5: The orbital ellipse

The true anomaly, v, is often sought in terms of two oth~
er anomalies: the mean ancmaly, Me, and the eccentric ano-
maly, E (see Figure 6). The mean anomaly is the angle mea-
sured from perihelion to Newcomb's mean Earth and the eccen-
tric anomaly is measured from perihelion to the point of
intersection with a line produced from the Earth perpendicu-
lar to the major axis and a circle of radius equal to the
major semi-axis.

The eccentric anomaly is computed from the mean anomaly
in an iterative manner using Kepler's Equation [Smart,
1960]:

Me = E - sinE .
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Subsequently, the true anomaly can be computed from the fol-

lowing relationship [Smart, 1960]:
tan(v/2) = [(1+e)/(1-e)] tan(E/2)

If the Earth is considered to be at the origin
liptic coordinate system, the Sun can be imagined
biting about the Earth like a satellite. 1In this
point of closest approach of the Sun to the Earth

as perigee and is in a direction opposite that of

of the ec-
to be or-
case, the
is denoted

perihe-

lion. Denoting w' as the ecliptic longitude of perigee and

remembering that w is the ecliptic longitude of perihelion,

it follows that

w' = w + 180° (deq) ,
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and similarly

v' = v + 180° (deg) .

From Figure 7 it can be seen that the eciiptic longitude

of the Sun, A, may be expressed in terms of the mean orbital

—

elements as follows:
A= w' + v
=L - Ms + v'

=L+C ,

where Ms Me+180° is the apparent mean anomaly of the Sun.
Newcomb [1898a] developed an expression for C, called the
Equation of the Centre, in terms of the Sun's mean anomaly
Ms. This is given as:

C=v - Me

= v' - Ms

(1.9194603 - 0.0047889 Te - 0.0000144 Te? ) sin Ms +

+

(0.0200939 - 0.0001003 Te) sin 2Ms +

+

(0.0002928 - 0,0000003 Te) sin 3Ms +
+ 0,0000050 sin 4Ms (deg) ,

where Te is the time in Julian ephemeris centuries elapsed
since 1900 January 0.5d ET.

The mean orbital elements on which Newcomb has based his

- oWy Wy Wy W W W W W N

orbital theories are given as [Newcomb, 1898a]:
L = Sun's mean ecliptic longitude referred to the mean equinox 'WJ
of date |
= 180° + Earth's mean ecliptic longitude referred to the mean'l
equinox of date :

= 279.696678 + 36000.768925 Te + 0.000303 Te? (deg), rl
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Figure 7: Newcomb's orbital elements

w = mean ecliptic longitude of perihelion referred

to the mean equinox of date

101.220833 + 1.719175 Te + 0.000453 Te %+

+ 0.000003 Te® (deq) ,

Ms = L - w' = mean anomaly of the Sun
= 358.475833 + 35999.04975 Te - 0.00015 Te? -
- 0.000003 Te 3 (deq),

e = eccentricity

0.01675104 - 0.00004180 Te - 0.000000126 Te ?
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+

23.

mean obliquity of the ecliptic

452294 - 0.013013 Te - 0.000002 Te’>  (deg),

natural logarithm of the mean radius vector

(R in astronomical units)

0.00003057 - 0.00000015 Te +

(-0.00727412 + 0.00001814 Te + 0.00000005 Te’ ) cos Ms +
(-0.00009138 + 0.00000046 Te) cos 2Ms +

(-0.00000145 + 0.00000001 Te) cos 3Ms -

0.00000002 cos 4Ms .

Again, Te denotes the interval of ephemeris centuries

elapsed since 1900 Jan. 0.5d ET.
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5. PERTURBATIONS
In the preceding chapter it was assumed that the orbital
path of the Earth was determined by its mutual gravitational
attraction with the Sun. But every other body in the solar
system also affects, to some extent, the motion of the Earth
and therefore the apparent motion of the Sun.

There are very extensive theories concerning these ef-
fects, known as perturbations, and it is beyond the scope of
this report to discuss them here. 1Instead, the results of
Newcomb's and LaVerrier's theories [Newcomb, 1891, 1898a],
that have been exclusively used in preparing the fundamental
ephemerides of the Sun, will be given.

Newcomb [1898a] has shown that the perturbations proauced
by a disturbing planet can be expressed as a sum of many
periodic constituents, each reduced to the from -

s cos(kK-jM-iMs) ,
where Ms is the mean anomaly of the Sun, M is the mean ano-
maly of the disturbing planet and s, K, j and i are cons-
tants for the specific periodic components given in Table 2.
The constant 's' for the natural logarithm of the radius
vector, logR, is expressed in units of the ninth decimal
place.

Table 2 has omitted some long period terms in ecliptic
longitude. Newcomb [1898a] has given the following expres-
sion for these effects where Te denotes the interval of

ephemeris centuries elapsed since 1900 Jan. 0.5d ET:
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The quantities upon which these expressions are based
have been taken from Newcomb [1898a,b,c,d], the Nautical Al-
manac Offices [1961] and Meeus [1962] and are given as:

Ms = mean anomaly of the Sun (see Chapter 4),
Mmn = 296.104608 + 477198.849108 Te + 0.009192 Te® +
+ 0.000014 Te’ (deg) ,
M = mean anomaly of the disturbing planet
Mercury: Mmc = 102.279381 + 149472.515289 Te +
+ 0.000507 Te? (deg)
Venus: Mv = 212.603222 + 58517.803875 Te +
+ 0.001286 Te? (deg)
Mars: Mm = 319.529022 + 19139.859219 Te +
+ 0.000181 Te? + 0.000001 Te® (deg)
Jupiter: Mj = 225.32833 + 3034.96202 Te -
- 0.000722 Te? (deq)
Saturn: Msn = 175.46622 + 1221.55147 Te -
- 0.000502 Te® (deq)
D = mean elongation of the Moon from the Sun
= 350,737486 + 445267.114217 Te - 0.001436 Te® +
+ 0.000002 Te® (deg) ,
F = mean argument of ecliptic latitude of the Moon
= mean ecliptic longitude of the Moon - ecliptic
longitude of the mean ascending node of the
lunar orbit on the ecliptic (¢)

= 11.250889 + 483202.02515 Te - 0.003211 Te? (deg) ,

_31_
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u' = average distance of the Sun from the Moon's

ascending node. (For practical purposes, the
terms containing this argument ma§ be neglected.
Maximum errors resulting from this are 07013
in ecliptic longitude, 0"036 in latitude and

9

0.000000003 in logR--i.e. approximately 7x10° AU),

log§-= logarithm of the mean radius vector (see

Chapter 4),

From the results of Chapter 4 and the above, the ecliptic

coordinates of the Sun may be expressed in the following

manner :
A = geometric ecliptic longitude of the Sun referred to
the mean equinox of date l
=L + C + di,
B = ecliptic latitude of the Sun referred to the meén
equinox of date
= ecliptic latitude of the Sun referred to the true
equinox of date (i.e. ecliptic latitude is
insignificantly affected by nutation)
=ds+ B = d8 ,
logR = natural logarithm of the radius vector
(R in astronomical units)
= logR + d(logR) ,
where;
B = 0 (deg) = mean ecliptic latitude of the Sun
d A= total perturbations in ecliptic longitude

dALP + damn + dixmc + div + dam + dxj + disn
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d B= total perturbations in ecliptic latitude

= d8mn + dBmc + dBv + d8m + dBj + dBsn

d(logR) total perturbations in logR

d(logR)mn + d(logR)mc + d(logR)v + d(lbgR)m +

4+ d(logR)j + d(logR)sn

_33_
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TABLE 2

Perturbation constants (after Newcomb [1898al])

MERCURY - Longitude and Radius Vector Perturbations

Longitude Log Radius Vector
i s(") K(ceg) s(10”")  K(deg)
-1 1 ©0.013 243.000 28.000 335.000
-1 2 0.005 225.000 6.000 130.000
-1 3 0.015 357.000 18.000 267.000
-1 4 0.023 326.000 5.000 2392.000

VENUS - Longitude and Radius Vector Pertubations

LONGITUDE LOG RADIUS VECTOR

i s(") K(deg) s(10~7)  K(ceg)
-1 (o] 0.07% 296.600 94.000 205.000
-1 1 4.838 299.102 2359.000 208.080
-1 2 0.074 207.900 69.000 348.500
-1 3 Q.009 248.000 16.000 330.000
-2 (o) 0.003 162.000 4.000 80.000
-2 1 0.116 148.900 160.000 58.400
-2 2 5.526 148.313 6842 .000 58.318
-2 3 2.497 315.843 869.000 226.700
-2 4 0.044 311.400 52.000 38.800
-3 2 0.013 176.000 21.000 90.000
-3 3 0.666 177.710 1045.000 87.870
-3 4 1.558 345.253 1487 .000 255.250
-3 S 1.024 318.150 194,000 49 .500
-3 6 0.017 315.000 19.000 43.000
-4 3 0.003 198.000 6.000 80.000
-4 4 0.210 206.200 376.000 116.280
-4 5 Q.144 195.400 196.000 105.200
-4 e 0.152 343.800 84.000 254.8Q00
-4 7 0.006 322.000 6.000 59.000
-5 5] 0.084 235.600 163.000 145.400
-5 6 0.037 221.800 58.000 132.200
-5 7 0.123 195.300 141.000 105.400
-5 8 0.154 359.600 26.000 270.000
-6 [ 0.038 264.100 80.000 174.300
-6 7 0.014 253.000 25.000 164.000
-6 8 0.010 230.000 14.000 135.000
-6 <] 0.014 12.000 12.000 284.000
-7 7 0.020 294.000 42.000 203.500
-7 8 0.006 278.000 12.000 194.000
-7 Q 0.003 288.000 4.000 166.000
-7 10 0.000 Q.000 4 .000 135.000
-8 8 0.011 322.000 24 .Q00 234.000
-8 <] 0.000 0.000 6.000 218.000
-8 12 0.042 259.200 44 .000 169.700
-8 13 0.000 0.000 12.000 222.000
-8 14 0.032 48 .800 33.000 138.700
-9 <] 0.006 351.000 13.000 261.000
-9 10 0.000 0.000 4,000 256.000
-10 10 0.003 18.000 8.000 293.000
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MARS - Longitude and Radius Vector Pertubations

-
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i
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LONGITUDE
s(") K(deg)
.006 218.000
.273 217.700
.048 260.300
.041 346.000
.043 343.888
.770 200.402
.028 14B.000
.004 284.000
.129 284.200
.425 338.880
.008 7.000
.034 71.000
.500 105.180
.585 334.060
.0089 325.000
.007 172.000
.085 54.600
.204 100.800
.003  18.000
.000 0.000
.020 186.000
.154 227.400
.101  96.300
.006 301.000
.048 176.500
.106 222.700
.003 72.000
.010 307.000
.052 348.900
.021 215.200
.004 57.000
.028 288.000
.062 346.000
.005 68.000
.012 111.000
.005 338.000
.017  59.000
.044 105.800
.006 232.000
.013 184.000
.045 227.BOO
.021 308.000
. 000 0.000
.004 243.000
.026 113.000
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JUPITER - Longitude and Radius Vector Pertubations

LONGITUDE LOG RADIUS VECTOR

i s(")  K(deg) s(10°7)  K(deg)
1 -3 0.003 198.000 5.000 112.000
1 -2 0.163 198.600 208.000 112.000
1 -1 7.208 179.532 7067.000 89,545
1 ©0 2.600 263.217 244.000 338.600
11 0.073 276.300 80.000 6.500
2 -3  0.069 80.800 103.000 350.500
2 -2 2.731  B87.145 26.000 357.108
) 2 -9 1.610 109.493 459.000  18.467
2 0  0.073 252.600 8.000 263.000
3 -4 0.005 158.000 9.000 69.000
3 -3 0.164 170.500 281.000 81.200
3 -2  0.556 B82.650 803.000 352.560
3 -1 0.210 98.500 174.000 8.600
4 -4 0.016 259.000 29.000 170.000
4 -3 0.044 168.200 74.000 79.900
4 -2 0.080 77.700 113.000 347.700
4 -1 0.023  93.000 17.000 3.000
5 -5 0.000  0.000 3.000 252.000
5 -4 0.005 258.000 10.000 168.000
5 -3 0.007 164.000 12.000 76.000
5 -2 0.008 71.000 14.000 343.000

SATURN - Longitude and Radius Vector Pertubations

LONGITUDE LOG RADIUS VECTOR

] 1 s(") K(deg) s(10™7) K(deg)

i =2 0.011 105.000 15.000 11.000

ﬁ 1 -1 0.419 100.580 429.000 10.600

v 1 o] 0.320 269.460 8.000 353.000

: 1 1 C.008 270.000 8.000 0.000

2 -3 0.000 0.000 3.000 198.000

2 =2 0.108 280.600 162.000 200.600

2 -1 0.112 283.600 112.000 203.100

g 2 (o] 0.017 277.000 0.000 0.000

3 -2 0.021 289.000 32.000 200.100

3 -1 0.017 291.000 17.000 201.000

? 4 -2 0.003 288.000 4.000 194.000
Y



VENUS - Latitude Perturbations
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MARS - Latitude Perturbations

i

-2
0
-3

ANN

JUPITER - Latitude Perturbations

j 1
1 -2
1 -t
1 o]
1 1
2 -1
3 -2
3 -1

SATURN - Latitude Perturbations

i
1 -1
1 1

LATITUDE

s(") K(deg)
0.029 145.0
0.005  2323.0
0.082 83.7
0.007 262.0
0.023 173.0
0.012 148.0
0.067 123.0
0.014 111.0
0.014 201.0
0.008 187.0
0.210 151.8
0.007 153.0
0.004 296.0
0.006 232.0
0.031 1.8
0.012 180.0
0.008 27.0
0.019 18.0
0.006 288.0
0.004 57.0
0.004 57.0
0.010 61.0

LATITUDE
s(") K(deg)
0.008 90.0
0.008 346.0
0.007 188.0

LATITUDE

s(") K(deg)
0.007 180.0
0.017 273.0
0.016 180.0
0.023 268.0
0.166 265.5
0.006 171.0
0.018 267.0

LATITUDE
s(")  K(deg)

0.006 260.0

0.006 280.0
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6. PROPER MOTION AND PRECESSION

The preceeding two chapters were concerned with the apparent
average motion of the Sun. This chapter, on the other hand,
primarily focuses on the mean motion of the stars outside
our solar system. Since the concepts behind proper motion
and precession have been exhaustively reported in many in-
troductory textbooks on astronomy, only a brief outline of
the ideas involved and the equations essential for applica-
tions to the problem at hand will be supplied (i.e. position

updating).

6.1 PROPER MOTION

The postions of the stars with respect to each other have
been observed to be variable. Each star appears to move in

space as a result of its own actual motion and its apparent

"motion due to the motion of our solar system [Mueller,1969].

This total motion is called proper motion and is determined
from astronomical observations.

The effects of proper motion on right ascension and dec-
lination are very small. For Polaris, the values of proper
motions in right ascension and declination for the epoch
1950.0 are 1871 and 0743 per tropical century respectively.
The changes in the values of proper motion with respect to
time are even smaller; 89783 per tropical century for right
ascension and -1"21 per tropical century for declination.

Note that the FK4 coordinates contain the e-terms of aberra-
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tion. These must be removed when updating stars with large
declinations (e.g. Polaris) due to the secant term in the
elliptical aberration correction (see Chaptér 8).

Given the right ascension (e ) énd declination (6,) of a
star for epoch and mean equinox of t, the coordinates (a;
and §') for epoch t and mean equinox t may be determined by
applying the star's proper motion. Denoting u to be proper
motion in right ascension, u' to be proper motion in decli-
nation and du/dt and du'/dt to be the corresponding rates of
change of the proper motions, these coordinates can be com-
puted as follows:

a; =a + u(t-to) + 0.5 du/dt (t-co)2
51 = 6, +ul(t-gy) + 0.5 du'/de (e-t )’ ,

where t and t  are in tropical centuries.

6.2 PRECESSION

The attraction of celestial bodies on the Earth's equatorial
bulge causes the rotational axis of the Earth to precess in
a circular motion. The uniform, mean motion, with a period
of about 25,800 years, is due to the Moon, Sun and planets
and is known as general precession.

The effect of general precession on the coordinates of a
celestial object is shown in Figure 8. At the initial epoch
t, . the right ascension, declination, vernal eguinox, eclip-
tic, north celestial pole and north ecliptic pole is given
as a_, 8, Y, 1 €y NCPo and NEP, respectively. For epoch t

[o] (o]

the subscripts are dropped.
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Figure 8: General Precession

The motion of the north celestial pole is described by
the 3 angles %, z and 8 which are called the precessional
elements. Newcomb [1906] has derived expressions for these
angles as functions of time based on both observations and

theory. These are [N.A.O., 19611]:

¢ = (2304.250+ 1.396t )t + 0,302¢ + 0.018t> (arcsec)
z = &+ 0,791t2 + 0.001t? (arcsec)
6 = (2004.682 - 0.853t )t - 0.426t% - 0.042t% (arcsec) ,
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where the initial epoch t is the number of tropical centu-
ries (the difference between the tropical and Besselian in-
terval is ignored here) elapsed since the Besselian epoch
1900.0 (JD 2415019.813) and the final epoch t is the number
of tropical centuries elapsed since the initial epoch.

I1f the initial epoch is assumed to be 1950.0 (JD

2433282.423), the above expressions reduce to:

z = 2304.948t + 0.302t2 + 0.018t3 (arcsec)
z = ¢ + 0.791t2 + 0.001t3 (arcsec)
o = 2004.255t - 0.426t2 - 0.042t3 (arcsec) ,

where t is given by:
t = (JD-2433282.423)/36524.2199 (tropical centuries)
For the initial epoch 1975.0 (JD 2442413.478) the expres-

sions become

¢ = 2305.297t + 0.302t%2 + 0.018t3 (arcsec)
z = ¢ + 0.791t2 + 0.001t?® (arcsec)
o = 2004.042t - 0.426t2 - 0.042t3 (arcsec) ,
where
t = (JD - 2442413.478) / 36524.2199 (tropical centuries)

From Figure 8 it is evident that the relationship between

the two epochs may be developed from a series of rotations.

To convert from the initial epoch to the final epoch it is

required to first rotate the initial coordinate system about

o
the z-axis by the angle 90 -%. A subsequent rotation about

the y-axis by 8 is then needed and a final rotation of -z
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about the z-axis will give the coordinate system in the fi-

nal epoch. In matrix notation this is given as:

x' X
y' = P(z,0,0)| y
z' |RA’ Z |RA ,
where .
P(z,68,z) = Rz(-z-90°)Rx(8)Rz(90° - ¢)
= Rz(-z)Ry(8)Rz(-¢)
P(1,1) P(1,2) P(1,3)
= | P(2,1) P(2,2) P(2,3)
P(3,1) P(3,2) P(3,3) "
and
P(1,1) = cosz cos 8 cosg - sinz sing
P(1,2) = - cosz cos8 sing - sinz cosg
P(1,3) = - cosz sins
P(2,1) = sinz cos g cosg + cosz sing
P(2,2) = - sinz cos® sinZ + cosz cos
P(2,3) = - sinz sin®
P(3,1) = sin®coszg
P(3,2) = - sin® sing
P(3,3) = cos8 .

Here, the R matrices are rotation matrices for a right-hand-
ed system of coordinates (cf. 2.4) and the argument in
brackets is the angular value of the rotation.

After performing the necessary reductions, the following

relationships are obtained:
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and

x' cosé' cosa'
y' = | cosé' sina'
z' |RA' sin &'

a' = arctan(y'/x"')

§' = arcsin(z') .

il = P(zlel‘:)|(
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7. ASTRONOMIC NUTATION
In reality the precessional motion of the Earth's spin axis
is not uniform. This irreqular circular motion of the in-
stantaneous spin axis of the Earth about the mean axis is
called nutation and is due partly to the elliptical charac-
ter of the Earth's orbit and to the inclination of the
Moon's orbit with respect to the ecliptic [Mueller, 1969].
Astronomic nutation is commonly referred to as simply nuta-
tion and should not be confused with the free nutation or
force-free precession of the Earth's spin axis about its
principal moment of inertia axis [Mueller, 1969].

The principal term of astronomic nutation is produced by
the inclination of the Moon's orbit with respect to thé ec-
liptic. It thus depends on the ecliptic longitude of the
Moon with a period of 18.6 years and has an amplitude of
9"210. This amplitude is often referred to as the constant
of nutation., Other terms.are due to the gravitational ac-
tion of the Sun and the Moon on the non-spherical, rotating
Earth. They depend on the mean ecliptic longitudes and mean
anomalies of the Sun and Moon and their combinations with
the ecliptic longitude of the Moon's node.

The resulting nutational motion of the pole of ‘the in-
stantaneous spin axis is resolved into two components; cor-
rections to ecliptic longitude (4Y¥) called nutation in ec-
liptic longitude and corrections to the obliquity (Ae)

called nutation in obliquity.
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The theory and numerical series upon which nutation is
presently based has been developed by Woolard [1953]. A
newer theory also exists and is to be introduced into the
fundamental emphemerides in 1984 (see Chapter i3). Here,
Woolard's theory shall be used. The deviations of this with
the modern approach will not be significant at the required
level of precision. In this developement there are a total
of 69 terms in AY and 40 in Ac of which those with periods
of less than 35 days are denoted as 'short-period' terms (dy
and d€); there are 46 short-period terms in dY and 24 in de

All long and short-period terms are listed in Table 3
which is reproduced from the Nautical Almanac Offices
[1961]. The notation used in this table has been defined in
previous chapters with the exception of 2 which is defined
as: |

@ = longitude of the mean ascending node of the lunar

orbit on the ecliptic

259.183275 - 1934.142008 Te + 0.002078 Te? +

+

0.000002 Te3 (deq) ,
where Te is the interval of ephemeris centuries elapsed
since 1900 Jan. 0.54 ET.

The procedure to follow when using the Table is to first
compute the arguments to be used in the table. Next, for
each row multiply each argument by its corresponding factor
(i.e. columns 2 to 6) and sum them. This is to be used as

the factor for the cosine function (for longitude) or the
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sine function (for obliquity). The corresponding arguments
for the trigonometric functions are given in the last two
columns. The sum of all sine terms for each period-row is
the nutation in ecliptic longitude , AY, and the sum of all
cosine terms is the nutation in obliquity, &€

As an example, for the period of 183.0 days the contribu-
tions to nutation in longitude (A&Y ') and obliquity (&e '),

are.

Ay

(-1"2729-0"00013Te) sin(2F-2D+29)

Ae'

(0"5522-0"00029Te) cos(2F-2D+22) ,
where Te is the interval of ephemeris centuries elapsed
since 1900 Jan. 0.5d4 ET.

Applying nutation to the ecliptic longitude of the Sun
and obliquity of the ecliptic, both corrected for proper mo-
tion and precession, reduces both to the true equinox of_
date. Note that nutation does not affect the ecliptic lati-
tude of the Sun.

For practical purposes (1" accuracy) only those terms
whose coefficients are greater than 071 need to be consid-
ered.

The effect of nutation on the right ascension system may
be derived in a manner similar to precession using rotation

matrices. The resulting relationship is [Mueller, 1969]:

X X
Y ] N(E,AE,A‘?) y'
z |RA z'|RA' ,

where
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N(€e, Ag, AY)

and
N(1,1)
N(1,2)
N(1,3)
N(2,1)
N(2,2)
N(2,3)
N(3,1)
N(3,2)

N(3,3)

N(1,

cos AY

N(2,

Rx (-e~Ae )Rz (- A¥)Rx(¢)

1) N(1,2) N(1,3)
1) N(2,2) N(2,3)
1) N(3,2) -N(3,3) i

- sinAY cos €

- ginAY sine

cos(e+ Ag)
cos(e+ Ae)
cos(e+ Ae)
sin(e+ Ae)
sin(e+ A€)

sin(e+ Ae)

Here, RA' indicates the

the time of observation

sinay

cosA¥ cose + sin(etae) sine

cosAY sine - sin(etde) cose

sinaAY

cosA¥ cose - cos(e+tbe) sine

cosAY sine + cos{ette) cose .
mean position of the RA system af

(i.e. corrected for precession).

The resulting expressions for the right ascension and

declination referred to the true vernal equinox and ecliptic

of date are then given by:

>

o]

RA

N

and

[*]
1]

o
"

cos § cos a cos§' cosa'

cos § sina

sin §

arctan(y/x)

arcsin(z) .

N(e,pe ,AY) | cosé' sina'

sin §' r
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TABLE 3

Series for nutation (after N.A.O. [1961])

LONG-PERIOD TERMS

Period Argument Long1itude Obliquity
(days) Multiple of Coefficient of Coefficient of
M M F Da Sine argument Cosine argument
Unit=0"0001
6788.0 O O 0 O 1 =172327 -173.7 Te 92100 9.1 Te
3388.0 0O 0 0 0 2 2088 0.2 Te -904 0.4 Te
1305.0 -2 0 2 O 1 45 0.0 -24 0.0
1095.0 2 0-2 0 O 10 0.0 0 0.0
6786.0 0-2 2 -2 1 -4 0.0 2 0.0
i616.0 -2 0 2 O 2 -3 0.0 2 0.0
3233.0 1-1 0-1 © -2 0.0 0 0.0
183.0 0O 0 2 -2 2 -12729 -1.3 Te 5522 -2.9 Te
365.0 o 1 0 0 © 1261 -3.1 Te o 0.0
122.0 o 1 2 -2 2 -497 1.2 Te 216 -0.6 Te
365.0 o0-1 2 -2 2 214 -0.5 Te -93 0.3 Te
178.0 c o0 2 -2 A1 124 0.1 Te -66 0.0
206.0 2 0 0-2 0 45 0.0 o 0.0
173.0 O 0 2-2 0 -21 0.0 0 0.0
183.0 0 2 0 0 © 16 -0.1 Te 0 0.0
386.0 0O + 0 O 1 -15 0.0 8 0.0
81.0 o 2 2 -2 2 -15 0.1 Te 7 0©.0
347.0 o-1t 0 O 1 -10 .0 - 5 0.0
200.0 -2 ©0 O 2 1 -5 0.0 3 0.0
347.0 -1 2 -2 1 -5 0.0 3 0.0
212.0 2 0 0-2 1 4 0.0 -2 0.0
120.0 o 1 2 -2 A1 3 0.0 -2 0.0
412.0 1 0 0-~1 O -3 0.0 0 0.0
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8. ABERRATION

Aberration is the angular displacement of the apparent posi-

tion of a celestial object due to the finite velocity of

light and the relative motion of thé object and observer,

The part that is due to the motion of the observer is called

stellar aberration and that due to the motion of the object

is referred to as the correction for light time. The com-

bined effect of both stellar aberration and the correction

for light time is known as planetary aberration.

Stellar aberration consists of the following three compo-

nets:

l.

Diurnal Aberration - due to the rotation of the
Earth.

Annual Aberration - due to the orbital motion of the
Earth around the centre of mass of the solar systém.
Secular Aberration - due to the motion of the solar
system around the centre of the galaxy. This effect

is included within proper motion.

When dealing with problems concerning the Sun and plan-

ets, only diurnal and annual aberration are considered since

these completely describe the total relative motions.
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8.1 ANNUAL ABERRATION

Annual aberration is computed from the actual motion of the
Earth, referred to an inertial frame of reference and the
centre of mass of the solar system, in accordance with the
recommendations of the International Astronomical Union
[1950, 1954]. .

Considering the Earth's orbit to be circular, it can be
seen from Figure 9 that the instantaneous velocity vector of
the Earth is in the direction 13-900 (A, is the ecliptic
longitude of the Sun). According to the general law of
aberration, the displacement of an object with ecliptic lon-
gitude X is in the same direction of the velocity of the ob-
server. The angular displacement in ecliptic longitude at
unit distance (1 AU) is given by Smart [1960] as:

AA = -k sec8 cos(ri  -}) (arcsec)
where k 'is the constant of aberration at unit distance
R'=1AU, whose value is 20"496 [N.A.O., 1979a]. For the Sun
B=0, X=XS and the effect on ecliptic longitude at distance R
from the Sun is:

aA = -k{(R'/R) (arcsec) .

For stars it is generally more convenient to give the
corrections to right ascension Aa and declination A§. The
fundamental aberration equation is given by Mueller [1969]
as

A8 = 6 - 8' = k sin8', for small A8,

_51_
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Earth's
orbit

Figure 9: Annual aberration--circular orbit

where 6 is the spatial angle between the true position of
the star and the direction of motion of the Earth and 6' is
the spatial angle between the apparent position of the sﬁar
and the direction of motion of the Earth. The resulting
corrections to right ascension da and declination A8 can be
shown to be

ba = -k sec &' ( cosr  cose cosa' + sinig sina')

Ad

-k[coskS cose(tane cosé' - siné' sina') +

+ cosd siné' sinxs] i

where o' and 6' are the apparent right ascension and decli-
nation of the star. The solution to this may be performed
in an iterative manner using the true right ascension and
declination as a first approximation to their apparent cout-

erparts. Normally, no iterations are needed. However, for



stars with large declinations (e.g. Polaris) the error in
the secS' term of Aa becomes significant and at least one
iteration should be made (one iteration is éenerally suffi-
cient).

When the Earth's elliptical orbit is considered another
correction is applied, sometimes referred to as the 'e-terms
of aberration'. The velocity of the Earth is resolved into
a component perpendicular to the radius vector, F, and a
component parallel to the minor axis, £, as illustrated in
Figure 10. Smart [1960] has then shown that both F and f
are constant along the orbit and that f=eF, where e is the
eccentricity of the orbit (see Chapter 4). The direction of
f is defined by an ecliptic longitude of 90° +w, w being the
ecliptic longitude of perihelion of the Earth's orbit (not
to be confused with w', the ecliptic longitude of perigee -
see Chapter 4).

It may be shown, by replacing w'-90° with ls-90° in the
previous equations, that the effect in the ecliptic longi-
tude of the Sun at unit distance R' is [Smart, 1960]:

82 = -ek sec B cos(w'-1)
= -ek cos(w'- 1) (arcsec) ,
where B=0. At a distance R, therefore, the resulting.cor-
rection is:
Ax = -(R'/R)ek cos(w'-2_ ) (arcsec) ,

where R and R' are in the same units of length.
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The effects in right ascension and declination are ob-
tained by simply replacing A, with w' in the equations for
the circular component. The maximum value of this correc-
tion is of the order of 0734 (i.e. the value of ek) for
stars where |§| < 80’ and is therefore often ignored for ac-
curacies of the order of 1". However, for Polaris, ¢ is
very close to 90° and thus the relatively large value of the
secd term produces a significant correction.

This effect is usually ignored in the precise reduction
of star coordinates obtained from the FK4 Star Catalog
[Fricke and Kopff, 1963] as the e-terms are included in the
tabulated values. The variation in these terms since the
date of tabulation is significant only for stars with lérge

declinations or when high accuracy is mandatory.
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w=w'-180°

Figure 10: General aberration

8.2 DIURNAL ABERRATION

When dealing with stars that are close to the north celes-
tial pole, the effect of diurnal aberration becomes signifi-
cant for astronomic latitudes less than approximately 70°
and must be taken into account.

The corrections to right ascension and declination have
been derived by Mueller [1969] and are as follows:

Aa

0.021p cos?® cosh' secs'/ o' (sec) ,

A 0.32p cos ¢ sinh' siné'/ o' (arcsec) ,

where p is the geocentric radius of the observer, o' is the
geocentric radius of the Earth, ¢ is the astronomic latitude

of the observer, h' is the dispaced hour angle of the star
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and &' is the displaced declination. The corrections should
be added to the true directions to obtain the displaced po-
sitions. Again, the solution of these equaéions should be
peformed iteratively for greatest accuracy, using the hour
angle and declination unaffected by diurnal aberration as a
first approximation. Only one iteration is usually re-
quired.

The significance of the corrections for circumpolar stars
may be realized by substituting typical values for the par-

ameters. Letting
o

§'= 89

¢ = 45°
h = 46°
p =0,

we find that Aa =056 which is significant for precise azimuth

determinations.
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9, PARALLAX
Parallax is due to the displacement of the observer from the
origin of the coordinate system. It results in an apparent
displacement of the observed position of a celestial object
equal to the parallatic angle, defined as the angle subtend-
ed at the celestial object between the observer and the ori-
gin of the coordinate system.

There are two types of parallax due to the different mo-
tions of the Earth. Geocentric parallax is the angle sub-
tended at the object between the direction of the observer
and the centre of the Earth. Annual or stellar parallax is
the angle at the object between the direction of the centre
of mass of the Earth and the centre of mass of the solar
system (i.e. the centre of the ecliptic coordinate system).
For stellar observations both parallactic effects are vefy
small [Mueller, 1969] and may be neglected here. Since the
Sun can be considered to be at the centre of mass of the so-
lar system, annual parallax is practically non-existent for
solar observations and will also be neglected in these cal-
culations. Therefore, only geocentric parallax as it re-
lates to observations on the Sun will be discussed. Furth-
ermore, geocentric parallax affects only the observed zenith
distance significantly and is applied only for zenith dis-
tance azimuth observations.

Geocentric parallax is illustrated in Figure 11 where p

is the distance of the observer from the centre of the
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Earth, z' is the observed zenith distance, z is the geocen-
tric zenith distance, a is the equatorial radius of the
Earth (6378137 m), R is the distance of the object (the Sun)
from the centre of the Earth (note - a and R must be in the
same units of length) and 7 is the geocentric parallax. It
can then be seen from Figure 11 that the following relation-
ships exist between the observed and geocentric zenith dis-
tances:

z' =z+ =
and

sinT =p sinz' / R

STAR

ZENITH

OBSERVER

EQUATOR

ORIGIN

Figure 11: Geocentric Parallax

When the object is on the horizon (i.e. z'=90°) the par-

allax is denoted as horizontal parallax. If the observer is
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also at a distance p=a the resulting parallax is known as

equatorial horizontal parallax, LA and is expressed as:
sinwo =a /R

where a and R are in the same units of length.’

At a constant unit distance R'=lAu the eqguatorial paral-
lax is 87794 and is called the constant of parallax, N. The
equatorial horizontal parallax at a distance R may then be
determined from the constant of parallax by equating the
equatorial distance a to give:

sinw_ = (R'"/R) sin @ .
Similarly, the constant of parallax may be used to com-

pute the geocentric parallax as follows:

sinn (p/R) sinz’'

(a/R) sinz'

sinﬂo sinz’

(R*/R) sinl sinz' ,
where the error involved in approximating p with a is negli-
gable on the Earth's surface (i.e. less than 071).

Finally, the geocentric zenith distance may be determined
from:

z =2z'- 7

z' - arcsin[(R'/R) sinm sinz'] .
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10. SEMI-DIAMETER

The semi-diameter of the Sun is the apparent radius as seen
from the Earth. It is obtained by dividing the adopted va-
lue of the semi-diameter at unit distance R'=1lAU, with an
allowance for irradiation, by the true radius vector. The
adopted value at unit distance, called the constant of
semi-diameter, is given as 16'01918 [N.A.O0., 1979]. The
semi-diameter at a distance R can then be determined by:

S.D. = 0.266994 (R'/R) (degq) .

If a horizontal angle is measured only to the edge of
the Sun, the so-called semi-diameter correction to the hori-
zontal angle is given as:

AHA = S.D. / cosa (deq) ,
where a is the altitude of the Sun. The sign of the correc-
tion depends upon which edge is observed; if observing the
trailing edge the correction is added to the observed clock-

wise horizontal angle.
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11. PRECISION CONSIDERATIONS
The Sun's astronomical data are presently tabulated to two
levels of precision by the various ephemerides (see Table
4). The Astronomical Almanac publishes right ascension to a
precision of 0?01, Greenwich sidereal time to 05001, decli-
nation to 0"1 and semi-diameter to 0Y0l. The equation of
time (E=12hr+Eq.T in The Star Almanac) is tabulated to a
precision of 031 in the K&E Ephemeris and Star Almanac.
Both tabulate declination and semi-diameter to 0ll.

The apparent right ascension and declination of Polaris
has been given much more precisely in the various star cata-
logues. Such precision, though, is not generally required
for users such as land surveyors. Consequently, we have

limited the precision to 1" in both right ascension and dec-

lination.
TABLE 4
Precision of ephemerides

Source Quantity Precision

The Astronomical Almanac GAST 0% 001
RA 0.01
Dec 0.1
S.D. 0001

The Star Almanac for Land E(GHA Sun) 051

Surveyors Dec 0.1
S.D. 0.1

K & E Ephemeris Eq.T. 051
Dec 0.1
S.D. o.l
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As previously stated, the expressions given in this re-
port will produce a precision comparable to the published
ephemerides. If such accuracy is not required, the expres-
sions may be truncated to give the desired pretision. Care
must be exercised, however, when neglecting some of the
smaller periodic perturbations since the large number of
seemingly insignificant terms may accumulate into a rela-

tively large correction.
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12. SUMMARY

The results of the foregoing are summarized below as a ser-

jes of steps to be executed when computing the azimuth of

Polaris and the Sun. For each step references are made to

the appropriate sections.

12.1

lo

SUN

Compute the mean ecliptic longitude, L, mean log of
the radius vector, logﬁl mean obliquity of the eclip-
tic, €, and the equation of the centre, C - Chapter
4,

Compute the total perturbations in ecliptic longi-
tude, dA, ecliptic latitude, d8, and logR, d(logR),
due to the planets and Moon - Chapter 5.

Compute the nutation in ecliptic longitude, AY, aﬁd
obliquity, &e - Chapter 7.

Compute the annual abberation correction to ecliptic
longitude, AXx - Chapter 8.

Determine the apparent geocentric ecliptic coordi-

nates of the Sun as follows:

A = apparent geocentric ecliptic longitude
=L + C + dx + AY + 48X
B = apparent geocentric ecliptic latitude

ds
logR = log of the true radius vector

= logR + d(logR)
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12.2

[y}
[}

true obliquity of the eclipfic

€ + Ae

Compute the apparent geocentric right ascension and
declination from the ecliptic coordinatés - Chapter
2.
Compute the geocentric parallax and apply the correc-
tion to the observed zenith distance - Chapter 9.
For observations on the edge of the Sun compute the
semi-diameter and apply the correction to the ob-
served horizontal angle - Chapter 10.
Compute Greenwich apparent sidereal time and local
hour angle - Chapters 2 and 3.

h = GAST - «

Compute azimuth of the Sun - Chapter 2.

POLARIS

Compute e-terms of aberration for the catalogued ep-
och and remove from the catalogued positions - Chap-
ter 8.

Compute and apply proper motion to the 1950.0 right
ascension and declination - Chapter 6.

Compute and apply precession from 1950.0 to date of
observation - Chapter 6.

Compute and apply nutation in right ascension and

declination - Chapter 7.
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Compute ecliptic longitude of the Sun and obliquity
of the ecliptic for the following step - Chapters 4,
5 and 6. '
Compute and apply annual and diurnal aberration using
ecliptic longitude of the Sun and obliquity - Chapter
8. i
Compute Greenwich apparent sidereal time and hour an-
gle of Polaris - Chapters 2 and 3.

h = GAST - «

Compute azimuth of Polaris - Chapter 2.
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13. 1I1.A.U. IMPROVEMENTS TO THE ASTRONOMICAL
CONSTANTS

The system of astronomical constants used in this report has
been adopted by the General Assembly of the I.A.U. at Ham-
burg, September, 1964 [International Astronomical Union,
1966)] and is the system currently in use. A list of the
pertinent constants is given in Table 5. The complete list
may be found in The Supplement to the American Ephemeris,
1968, pp.4s-7s. It should be noted that the adopted plane-
tary mass ratios have not been incorporated into Newcomb's
perturbation theories.

In 1976 the General Assembly of the I.A.U. adopted a set
of recommendations calling for a re-definition of the astro-
nomical constants. The changes are planned to be introduced
in 1984. The following is a brief summary of the adopted
recommendations:

1. A new fundamental epoch designated as J2000.0 (2000
January 1.54 UT or JD2451545.0) and the Julian centu-
ry will be regarded as the unit of time in the equa-
tions of motion.

2. A new system of astronomical constants including
changes to the constants of precession, nutation,
aberration and parallax based on the fundamental ep-
och (see Table 6).

3. A new fundamental reference frame defined by the FKS5
incorporating an equinox adjustment, which is also to

be used to amend Greenwich mean sidereal time at zero
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TABLE 5

I.A.U., 1964 system of astronomical constants (after N.A.O.

[19611)

Defining Constant

———

———————————— -

Gaussian gravitational constant

Primary Constants

——————————

Astronomical unit

Velocity of light

Equatorial radius of Earth

Dynamical form-factor for Earth

Geocentric gravitational constant

BEarth/Moon mass ratio

General precession in longitude
per tropical century (1900)

Constant of nutation (1900)

Obliquity of ecliptic (1900)

Derived Constants

————————

Solar parallax

Constant of aberration
Light-time for unit distance
Flattening factor for Earth

Heliocentric gravitational constant

Sun/Earth mass ratio
Sun/(Earth+Moon) mass ratio
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k=0.017202098950000

1.49600x10!! m
2.997925x%108 m/s
6378160 m
0.0010827
3.98603x10 " m
81.30

5025764
97210
23927' 087258

87794

207496

499,012 s
1/298,25
1.32718x1029 m3/s2
332958

328912
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TABLE 6

I.A.U. 1976 system of astronomical constants (after Stein
[1982])

Defining Constant

———————————

Gaussian gravitational constant k=0.0172020983950000

Primary Constants
Astronomical unit
Velocity of light

1.49597870x10 ! m
2.99792458x10 ® m/s

MR 2 ESR 92BN 0 =N el dE GRS e R Sl A A0 0 A

b TR R N B |

Equatorial radius of Earth
Dynamical form-factor for Earth
Geocentric gravitational constant
Earth/Moon mass ratio
General precession in longitude
per tropical century (2000)
Constant of nutation (2000)
Obliquity of ecliptic (2000)

Derived Constants

————————

Solar parallax

Constant of aberration
Light-time for unit distance
Flattening factor for Earth

Heliocentric gravitational constant

Sun/Earth mass ratio
Sun/(Earth+Moon) mass ratio

_68—.

6378140 m
0.00108263
3.986005x10" m
81.3007

502970966
972109
23°26" 217448

87794148
20749552
499.004782 s
1/298.257

1,32712438%x1029 ¢ /g2

332946.0
328900.5



hr UT in order to avoid a discontinuity in UT. The
expression for the correction to the FK4 equinox is
[Fricke, 19801]:

E = 0.035 + 0.085(T-19.50) (sec) ,
where T is in Julian centuries. The corresponding
expression for GMST at 0 hour UT is:

GMST(OhrUT) = 6.6973758 + 2400.0513372 Tu +

+ 0.0000258 Tu? (hr) ,

where Tu is the interval of Julian centuries elapsed

since 2000 January 1.5d UT1 (negative for years prior

to 2000).

The 1980 I.A.U. Theory of Nutation based on Wahr's

[1981] theories shall supercede Woolard's theories.
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Appendix A
PROGRAM SPADE - SOLAR AND éOLARIS AZIMUTH

DETERMINATION
This Appendix provides a description of the program SPADE
which computes, among other things, the azimuth to a refer-
ence object from astronomical observations on either the Sun
or Polaris. A listing of the program is given in Appendix
C. The azimuth of the celestial object is determined from
2.4.2. Both the hour angle and zenith distance solutions
have been incorporated for solar observations but only the
hour angle solution has been included for observations on
Polaris.

The program has been developed in Watfiv (WATerloo For-
tran version IV) and is based upon 'stand-alone' subroutines
in order to make specific individual modifications as simple
as possible. No difficulties should be encountered running
the program with standard versions of the Fortran compiler.

The second version of this program is given in this ap-
pendix. Changes were made to the original version to im-
prove accuracy and portability. The main program has been
divided into three basic parts. The first calculates vari-
ous astronomical quantities for use in updating both the Sun
and Polaris. The second part computes the azimuth of the

Sun (and subsequently of the reference object) by deriving
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the Sun's right ascension and declination and various other
data from the expressions given in the body of this report.
The third part computes the azimuth of Polaris by updating
its FK-4 coordintates in the traditional manner also out-
lined in this report.

A description of the notation used is supplied in the
program and subroutine comment statements. 1In addition,
complete input instructions are also provided within the
program. Briefly, the input deck requires each individual
observation to begin on a new record (i.e. on a new line or
card). Furthermore, format-free input has been utilized re-
quiring only a blank space to separate each data wvalue.

The main program requires angular data to be input as de-
grees, minutes and seconds or, in the case of time arguments
and right ascension, hours, minutes and seconds. Howevef,
all subroutines require angles to be given in decimal de-
grees or hours. Double precision variables of sixteen sigi-
ficant digits (i.e. variables that occupy eight bytes of me-
mory instead of four bytes for 'real' variables) are used
throughout.

To facilitate the simplification or modification of the
program to either solar‘or polaris observations, a list of
subroutines required for either observation is given below.
A description of these is given in the program listing.
Here, the letter 'P' indicates the subroutine is required
for a polaris observation and "S" for a solar observation.

Polaris & Solar Observation Subroutines:
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- AZHA, SOLDAT, DEG, DMS, GST, JDATE

Solar Observation Subroutines:

~ AZID, RADS, SDC

Polaris Observation Subroutines:

- AAB, DAB, NUT, PM, PREC
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Appendix B

PROGRAM TESTING

In order to test the program, various examples were input
and the results compared to manual computations. In the be-
ginning, the coordinate calculations were compared to the
published ephemerides and star catalogues. In all cases
perfect agreement was found at the desired 1" level for a
wide range of epochs (1960-1982). Subseguent tests involved
checking the azimuth subroutines (i.e. AZZD and AZHA). Both
operated correctly. The final tests concerned the propér
operation of the complete SPADE program. Again, the program
functioned correctly. A number of different observation-
types were input and checked against manual calculations to
ensure perfect agreement.

Two examples of the output are given in the following Ta-

ble.

_77_




TABLE 7

Sample SPADE Output

Example 1:

SFADE - SOLAR AND FOLARIS AZIMUTH DETERMINMATIOM

SOLAR OBSERVATION — HOUR ANGLE SOLUTION
WITH SEMI-DIAMETER CORRECTIOM

INFUT
LATITUDE (D-M-5) = 4Z-40-10.0
LONGITUDE (D-M-8) = 79-T0— Q.0
DATE (Y/M/8) = 1972711 /20
UNIVERSAL TIME (H-M-8) = 20-10-20.0
HORIZ ANGLE (D~-M-S) = 210-10-20.0
DUTFUT
ZENITH DIST (D-M-8) = 76-32-55.9
BGAST (H-M-5) = O=10- 4.1
RA (H-M-8) = 15-45-=1.4
DEC (D—-M-8) = ~19-51-17.8
AZ OF STAR (D-M-85) = 224-40-29.1

AZ OF RO (D—-M-5) = 14-13-28. 4

Example 2:

SFADE - SOLAR AND FOLARIS AZIMUTH DETERMINATION

FPOLARIS OBSERVATION

E INPUT
LATITUDE (D-M-8) = 473-40-10.0
LONGITUDE (D-M-3) = 79=30~ 0.0
DATE (Y/M/S) = 1972/11/20
UNIVERSAL TIME (H-M-$) = 4-10-20,0
HORIZ ANGLE (D-M-8) = £0-10-10.0
i QUTFUT
v ZENITH DIST (D-M-8) = 45~29-2Z.2
GAST (H-M-8) = 8- 7-26.4
u RA (H-M-5) = 2~ 7- E.7
| DEC (D-M-8) = 89— B8-39.9
AZ OF STOR (D-M-8) = I59~-446—45.9
’ - AZ OF RO (D-M-5) = 299435, 9
] - 78 -



Appendix C

PROGRAM SPADE LISTING
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EVEL 1.1,1 (DEE  81) Y5 FORTRAN DATE: JUL 19. 1984  TIME: QZ:3B:14 PAGE:

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED
JPTIMIZE(Q) LANGLVL{b&) MOFIPS  FLAG(I) NAME(MAIN ) LINECOUNT(50)

A R B P A S % TS -

32312200 0R000000¢0 R0 00000 800000840000 0000388008s08008¢388031
PROGRAM SPADEZ

SOLAR AND POLARIS AZIMUTH DETERMINATION
VERSION 2 - 2 DEC 1982

COMPUTES AZIMUTH OF THE SUM OR POLARIS AND A REFERENCE OBJECT
FROM ASTRONOMICAL OBSERVATIONS ON THE SUN OR POLARIS BY UPDATINE
THE CELESTIAL CODRDINATES OF THE SUN AND/OR POLARIS.

BY MICHAEL R. CRAYMER
SURVEY SCIENCE
ERINDALE COLLEGE
UNIVERSITY OF TORONTO
L3L 1Ct

{C) COPYRIGHT MICHAEL R. CRAYMER. 1983.

g

c

c

E

¥

C

c

C

c

C

c

C

C

C

c

C

c

C

C INPUT

C - FORMAT-FREE (I.E. LEAVE A BLANK SPACE OR COMMA BETWEEN DATA
C VALUEE,

C - DOUBLE PRECISION VALUES ARE INDICATED BY "DP®. EXAMPLES OF
C DOUBLE PRECISION VALUES ARE:

c 30.9D0 -3 30,5

c 20,00 -2

C - START A NEW INPUT RECORD (I.E. LINE OR CARD) FOR EACH NEW

C INDIVIDUAL OBSERVATION. AN INDIVIDUAL OBSERVATION IS CONSIDERED
g TO BE THE MEAN YALUES OF OME INDIVIDUAL OBSERYATION SET.

C CONTINUE INPUT DATA ON THE FOLLOWING INPUT RECORD IF MORE THAN
c 80 COLUMNS ARE REBUIRED FOR AN INDIVIDUAL OBSERVATION. RUT
C REMEMBER TO BEGIN ON A NEW RECORD FOR A NEW INDIVIDUAL

C OBSERVATICN.

e ~ THE FOLLOWING DATA VALUES FOR EACH RECORD OR OBSERVATION SHALL
C BE ENTERED IN EYACTLY THE SAME CRDER AS GIVEN BELOW'

C

C

c

C

C

c

C

C

C

C

C

C

C

c

C

L

c

C

ORDER OF INPUT
- SOLUTION CODE

{ -- FOR SOLAR OBSERVATIONS (ZENITH DISTANCE
SOLUTION)

= 2 -- FOR SOLAR OBSERVATIONS (HOUR ANGLE SDLUTION

NITH NG SEMI-DIAMETER CORRECTION)

= 3 -- FOR SOLAR OBSERVATIOMS (HOUR ANGLE SOLUTION
WITH SEMI-DIAMETER CORRECTION)

4 -~ FOR POLARIS OBSERVATIONS (HOUR ANGLE
SOLUTION)

DEGREES OF OBSERVER'S LATITUDE (INTEEER)

- MINUTES OF °

GECONDS OF  * ) s 0P}

DEGREES OF OBSERVER’S LONEITUDE (INTEEER)

- MIMUTES OF  *

- SECONDS OF  ° . . {DP)

- YEAR {INTERGER)

- MONTH (INTEGER!



LEVEL 1.1.1 (DEC 81) Y5 FORTRAN

ISN
1M
ISN

I8N

15N

18N

1SN
ISN
I5M
ISN
1SN
ISN
15N
ISN
I8N
ISN
1N

ISN

ISN
ISN
18N

At e

10
11
12

T
o

14
15
14
17
18

25

An
s

x4
Lt

24

tllllt'lllll lllll l'zll.llllll3llIlllllI4.llllllllsllil.llllbll.lIllll:’l'l'llll

c - DAY OF OBSERVATION (INTEGER)

c - HOURS OF UNIVERSAL TIME OF OBSERVATION (INTEGER!

C - MINUTES OF * =1 8 .

C - GECONDS OF ° SIS ' ' (P

c - DEGREES OF HORIZONTAL ANGLE FROM RO TO SUN OR POLARIS (INTEGER)
C - MINUTES OF . L . :

C - SECONDS OF " “« v L
£ - DEGREES OF ZENITH ANGLE (INTEGER) — IF NOT OBSERVED ENTER 0

c - MINUTES OF ° " ' .« . e

c - GECOMDS OF . ) v ’ I
C

C NOTE

c - THE UTC OFFSET FROM ET (DET) IS DEFINED IN THE DATA STATEMENT.

C SHOULD THE UTC OFFSET BE CHANGED. THE DATA STATEMENT SHOULD BE
C MODIFIED ACCORDINGLY FOR HIGHEST PRECISION.

n

CHELE SRR as R AR LR ER RS SR ERRLSS A RARIIRALATLRLRTTRRLILLRLILALITLTINAIINS

IWPLICIT REAL$8(A-H.0-1)

REALY8 JD, JED, MA, LMAN, NL, NOB

INTEGER SOLN,OLATD,OLATH, OLONGD, OLONGM, Y, DAY, UTH, UTM, HAD, HAM, 20,
Y DM, GASTH, GASTM, AZD, AZM, AZROD, AZROM, RAH, RAM, DECD, DECH

Lor ]

DATE: JUL 19, 1984  TIME: 03:3B:16

£ INPUT
c

DATA RAO/1.B13551100/,DECO/89.028817D0/, IRA/0, 0050297D0/
& DDEC/-0,00011900/, DET/0. 013051111/

500 READ{S,3,END=400) SOLN,OLATD,OLATM,OLATS, OLONGD, OLONGH, OLONGS,
& Y,M,DAY,UTH,UTN,UTS, HAD, HAM, HAS, 2DD, ZDN, ZDE

WRITE(&,1001)
C
C COMPUTE REQUIRED DATA
c

CALL DEG{OLATD,COLATM,OLATS,ELAT)
CALL DEG(OLONGD, OLONEM, DLONGS, DLONG)
CALL DEG(UTH,UTM,UTS,UT)

CALL DEG(HAD,HAM, HAS, HA)

CALL DEG(ZDD,ZDH,IDS,ID)

CALL JDATE(Y,M,DAY,UT,JD!

ET=UTHDET

CALL JDATE(Y,M,DAY,ET,JED!

CALL DATA (JED, MA,LMAN,D,F, ML, MOB, TOB, TL, TR, AL, ALAT)
CALL GST(UT,JD,T0B,NL,GAST)

IF (SOLN.EQ. 416070 100

CALL RADS(AL,ALAT,TOB,RA,DEC

C
C IENITH DISTANCE SOLUTION - SOLAR OBSERVATON
C

IF {SOLN. HE. 1)60TD 200
CALL AZZD(DEC,UT,OLAT,OLONG, 2D, AT
G0TD 300

FOLARIS OBSERVATION DATA

[ B o I e

100 CALL PM(JD.RAD,DECO,DRA,DDEC,RAL,DEC1)
CALL PREC(JD,RAL,DECL,RAZ,DECZ)
CALL MUT(ML,%OB,70B,RA2, DEC2,RAT, DEC3)

NAME: MAIN

£

PAGE:

2
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LEVEL 1.1.1 (DEC  81) VS FORTRAN DATE: JUL 19, 1982  TIME: 03:38:1&
e T PRI ARSI VST, A W -
ISN poi CALL AAB(TL,TOB,RA3,DECZ,RA4, DECA)
I % CALL DAB(DLAT,DLONG, GAST,RA4, DEC4, RA, DEC)
C
C HOUR ANGLE SOLUTION - SOLAR AND POLARIS OBSERVATION
C
15N 27 200 CALL AZHA(RA,DEC,BAST,OLAT,OLONG, 7D,A7)
C OPTIONAL SEMI-DIAMETER CORRECTION
1N 28 IF(SOLN.EQ.3) CALL SOC(HA, 2D, TR,SD)
r
CouTRLT
C
16N 0 300 AZRO=AZ-HA
ISN iS| IF (AZRO. LT. 0. D0) AIRO=AZRO+340
TN 3 CALL DMS(ZD, DD, ZDM,7DS)
1N i CALL DMSIAZ,AZD,AIN,AZS)
1N 35 CALL DMS(AIRO,AZROD,AZROM, AZROS)
1SN 3 CALL DMS(GAST,EASTH,GASTH, GASTS)
15N 77 CALL DMS(RA.RAN, RAM,RAS)
ISN 38 CALL DMS(DEC,DECD, DECH, DECS)
15N 19 IF{SOLN.EQ. 1) WRITE(&,1002)
1SN 8 IF{SOLN, EQ.2) WRITE(, 1003)
TSN 83 TF (SOLN.EQ.3) WRITE(A, 1004}
15N 15 IF (SOLN.EQ.4} WRITE(&,1005)
6N S WRITE (6,1004) OLATD,OLATN,OLATS, OLONGD, OLONGH, OLONGS, Y, M, DAY,
L UTH,UTM,UTS,HAD,HAM, HAS, ZDD, ZDM, 705, GASTH, GASTH, GASTS , RAH,
% RAM,RAS,DECD,DECH,DECS, AZD, AIM, AZS, AZROD, AZROM, AZROS
1SN 48 FOTO 500
16N 49 400 STOP
C FORMAT STATEMENTS
c
ISN S0 1001 FORMAT(*1SPADE - SOLAR AND POLARIS AZIMUTH DETERNINATION'.//)
ISN 51 1002 FORMAT(1X,’SOLAR OBSERVATION - ZEMITH DISTANCE SOLUTION®,/)
TSN 52 1003 FORMAT(1X,’SOLAR OBSERVATION - HOUR ANGLE SOLUTION',/,
b 1X,"NO SEMI-DIAMETER CORRECTICN’,/)
TN ST 1004 FORMAT(1X,SOLAR OBSERVATION - HOUR ANGLE SOLLTION’./,
& {%,"WITH SEMI-DIAMETER CORRECTION',/)
1N 4 1005 FORMAT(1X,’POLARIS OBSERVATION',/)
1SN S5 1004 FORMAT(1%,INPUT®,/,5X,
Y 'LATITUDE (D-M-5) = *,18,%-7 12,7 ,F4.1,/,51,
& LOMGITUDE (D-M-S8) = ?,17,7~",12,7-7 F4.1,/,5%,
Y TDATE (Y/M/S) = 7 142,07 012,000, 12,7,5Y,
X "UNIVERSAL TINE (H-M-8) = *,12,°-*,12,7=" F4.1,/,5¢,
% THIRTZ ANGLE (D-M-5) = *,15,7-",12,"=? ,F&.1,7,1X,
X *QUTPUT /53,
¥ IENITH DIST (D-M-5) = *,I5,"-",12,’-" ,F&.1,/,5X,
§ PBAST (H-M-S) = *,112,7-7,12,7~",F4.1,/,5X,
% 'RA (H-M-S) = ', 114,°-7,12,7-" F4.1,/,5K,
5 "DEC (D-M-8) = *,I13,°-",12,’-" F4.1,/,5Y,
% 'AL OF STAR (D-M-5) = °,1s,"-",12,7-",F8.1,/,5,
& *AZ OF RO (D-M-5) = *,18,’-",12,"-",Fd.1,//)
ISN 54 END
ASTATISTICSt  SOURCE STATEMENTS = 50, PROGRAM SIZE = 3170 BYTES, PROGRAM MAME = MAIN

o]

AGE:

NAME: MAIN

PAGE:
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LEVEL 1.1.1 (DEC Bl VS FORTRAN
ISTATISTICS®  NO DIAGNOSTICS GENERATED.

$11128 END OF COMPILATION ! txe2gt

DATE: JuL 19, 1984

TIME: 03:38:16

NAME: MAIN

PAGE:
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LEVEL f.1.1 (DEC

OPTIONS IN EFFECT:

ISN 1
ISH 2
ISN 3
I 4
15N 3
1N b
IEN 7
ISN 8
ISN H
ISN 19
YOTATISTICSS
ISTATISTICSY

g1} VS FORTRAN DATE: JUL 19, 1984  TIME: 03:3B:15 NAME: MAIN

KOLIST NOMAP NOXREF ~ GOSTMT NODECK SOURCE  TERM  OBJECT FIXED
OPTIMIZE(0) LANBLYL(46) NOFIPS  FLAG(I) MAME(MAIN ) LINECOUNT(50)

T . P 1 Y- Y PP P

P23 R0e 000300t R R0 0000003380 Rt i iR Rtobiirsitniecatistsiteiiill

[ar 2 e B o S wur N oo BOF o TN v B o J o B e TN v N e N 2 Y o T o T 0 |

[ er ol

SUBROUTINE AAB(TL,TOB,RA3,DECT, RA4,DECA)

ANNUAL CIRCULAR ABERRATION

COMPUTES APPARENT RIGHT ASCENSION AND DECLINATIOM DISPLACED
8Y CIRCULAR AMMUAL ABERRATION GIVEN THE TRUE OBLIQUITY. THE
TRUE RIGHT ASCENSION AND DECLINATION OF THE STAR AND THE TRUE
LONGITUDE OF THE SUN.

R = CONVERSION FACTOR FROM DEEREES TD RADIAMS

TL = INPUT TRUE LONGITUDE OF THE SUN (DEGS)

T0B = NPUT TRUE OBLIGUITY (DEGS)

RAI = INPUT TRUE RIGHT ASCENSION REFERRED TO THE TRUE EQUINOX OF
DATE (HRS)

DECI = INPUT TRUE DECLINATION REFERRED TO THE TRUE EDUINOX OF DATE
{DEGS)

RA4 = OUTPUT APPARENT RIGHT ASCENSION DISPLACED BY CIRCULAR ANNUA
ABERRATION (HRS)

DEC4 = OUTPUT APPARENT DECLINATION DISPLACED BY CIRCULAR ANMUAL
ABERRATION (DEGS)

10233080 200e2020200000003 00 0000000000000 Rse0ieesRo0etaRRettibiti]

INPLICIT REAL#8(A-H.0-2}

REAL¥E DSIN,DCOS, DTAN, DATAN

R=4.DOSDATAN(1,D0}/180.D0
RA4=RA3-0,000379600/DC0OS (DECIIR) £ (DCOS(RAZI1SSR) KDCOS{TLER)
% $DCOS(TOBAR) +DSIN(RASKISER) XDSINCTLAR) )

DEC4=DEC3-0. 005693008 (DCOS(TLIR) $DCO(TOBER) ${DTAN (TOBLR)
Y ¥DCOS(DECIARI-DSIN(RATI$152R) tDSIN(DECIIR) ) +DCOS (RATLISIR)
% XDSIN(DECISR) RDSIN(TLIR))
RA4=RA3-0,0003794D0/DCOS (DECALR) £ {DCOS (RA41154R) tDCOS(TLLR)
% fDCOS(TOBER)+DSIN(RA4%15ER) RDSIN(TLIR))
DEC4=DEC3-0.00567300% (DEDS (TLLR) tDCOS(TOBAR) £ (DTAN (TORIR)
% IDCOS(DECA4R) -DSIN(RA4KIELR) 1DSIN(DECALR) ) +LCOS (RA4315IR)
& #DSIN(DEC42R) tDSIN(TLIR))

RETURN

END

COURCE STATEMENTS = 10, PROGRAM SIZE = 1814 BYTES, PROGRAM NAME = ARB  PABE:  S.

NO DIAGNOSTICS SENERATED.

$1E208 END OF COMPILATION 2 31382

PAGE:



LEVEL 1.1.1 (DEC B1) VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:16 NAME: HAIN

OPTIONS IN EFFECT: NOLIST MOMAP NOXREF  GOSTNT NODECK SOURCE TERN  OBJECT FIXED
OPTIMIZE(0) LANGLVL(6&) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60)

 SUTUN SUUN PR SRS PPN NP, RAPPPRPPIN . S TTRPRTY M SPPTPTR -

Reesei3otsids3itetitisasitiiieciiitsttsnsiittibteitiiassiititistnseiids
ISN 1 SUBROUTINE AZHA(RA,DEC,GAST,OLAT,OLONG, 2D,A2)

AZIMITH DETERMINAION - HOUR ANGLE SOLUTION

COMPUTES AZTIMUTH AND IENITH DISTANCE OF A CELESTIAL OBJECT
BIVEM THE GAST, THE OBSERVER'S LATITUDE AND LONGITUDE, THE
RIGHT ASCENSION AND DECLINATION OF THE STAR

} = C ONVERSION FAC TOR FROM DEGREES 7O RADIANS
GAST = GREENKIC H APPARENT SIDEREAL TIME (HRS)
RA = APPARENT RIGHT ASC ENSION (HRS)
DEC = APPARENT DEC LINATION (DEBS)
OLAT = OBSERVER’S LATITUDE (DEGS)
0LONG = OBSERVER’S LONGITUDE (DEGS)
H = HOUR ANELE (DEGS)
A = AZIMJTH OF C ELESTIAL OBJEC T (DEGS)
1D = IENTITH DISTANC E (DEGS)
EeTRoRttiseadifreasatetsiiipiissiiepitspsientesittapiioatatdissits)
IMPLICIT REAL38(A-H.0-1)
REAL£S DCOS,DSIN, DTAN,DATAN, DARCOS
INTEGER SOLN
H=(GAST-RA) £15. -OLONG
R=(4, sDATAN{1,D0} ) /180,
Y=-DCQS (DECR) ADSIN(HER)
U=DSIN{(DECHR) $DCOS (OLATR)-DCOS {DECIRI 2DCOS (HER) $DSINIOLATIR)
ISN AZ=DATAN(V/U) /R
18 IF{U.LT.0.D0)AZ=AZ+1B0
I8N {2 IF {U.6T.0.00,AND, ¥,LT.0.D0)AZ=AZ +360
ISH 14 1D=DARCOS (DSIN(DECSR) $DSIN(OLATHR) +DCOS (DECKR) $DCOS (HER)
% 3DCOS(OLATER)) /R
ISN 13 RETURN
I5H 18 END

OO COOoOOOO0OCaoOeonooa;

I8N
ISN
N
ISN
15M
ISN
IH

0 €O~y U~ o e 2

—
<

ASTATISTICS:  SOURCE STATEMENTS = 14, PROGRAM SIZE = 1198 BYTES, PROGRAM MAME = AZHA  PAGE: 6.
ISTATISTICSt  NO DIAGNOSTICS GENERATEL.

sieisg IND OF COMPILATION 3 #3338t

PAGE:




£ )

H?z_';g

LEVEL 1.1.1 (DEC 81) VS FORTRAN DATE: JUL 19, 1984  TIME: 02:3B:1s

NOLIST NOMAP NOXREF
OPTIMIZE(Q)

EOSTMT NODECK  SOURCE
LANGLVL (64} NOFIPS  FLAG(I)

TERM  OBJECT FIXED
NAME(MAIN ) LINECOUNT (50

OPTIONS IN EFFECT:

NAME: MAIN

TIPS T . P AP PPPPIIY FTTTTTTNY IR PITRTI TOPPRTDRI J PRPPRN-

nboistitiitaeipeiiieientiocciisRiioitipecieiitaeaiettosiaidifetiistt]
ISN 1 SUBROUTINE AZZD{DEC,UT,OLAT,OLONG, ID,A2)
AZIMUTH DETERMINATION ZENITH DISTANCE SOLUTION
COMPUTES AZIMUTH OF CELESTIAL OBJECT BIVEN THE
OBSERVED ZENITH DISTANCE, APFROX. UT, OBSERVER’S LATITUDE AND
LOMGITUDE

[ar B up N ov }

R =C ONVERSION FAC TOR FRCM DEGREES TO RADIANS
ID = ZENITH DISTANC E (DEBS) (INPUT IS OBSERVED: OUTRUT IS
C CORREC TED FOR REFRAC TION AND GEOC ENTRIC  PARALLAX)

CLAT = DBSERVER'S LATITUDE (DEGS)

OLONG = OBSERVER’S LOMGITUDE (DEGS)

DEC = APPARENT DEC LIMNATION (DEGS!

UT = APPROX. UNIVERSAL TIME (HRS)

Al = AZIMUTH OF C ELESTIAL OBJEC T (DEGS)
121080350000 0303bt e bRoR 000000000 003040000 000000000300 ¢80¢8000%%)
ISH 2 IMPLICIT REAL$8(A-H,0-1)

[ 2 o By B v B ow B o BN o B o B 0 BN wv N o B o |

-3

I8N 3 REAL$B DSIN,DCOS, DTAN, DATAN, DARCOS

ISN 4 R=(4. XDATAN(L, DO) ) /180,

1N 3 ID=1D+(SBXDTAN(ZDER)-B, FXDSIN(ZDER)) /3500,

ISN 6 AZ=DARCOS( (DSIN(DECER)-DSIN(QLATER) XDCOS (ZDXR)) / (DCOS(OLATSR)
% 1DSINCIDIR))) /R

ISM 7 IF{AZ,LT.0.D0.AND. (UT-OLONG/15.).LT.12.)AZ=RT+180,

15N 2 IF{AZ.LT.0.D0.AND. (UT-0LONG/135,).6T.12,)A7=1B0.-AZ

ISN 11 [F{AZ.GE.0.DO.AND, (UT-OLONG/15.).6T.12.)A7=340.-A1

I5N 13 RETURN

ISN 14 END

FSTATISTICSY  SOURCE STATEMENTS = 11, PROGRAM SIZE = 103B BYTES, PROGRAM NANE = AZID  PAGE:

ISTATISTICST KO DIAGNOSTICS GENERATED.

Y5310 END OF COMPILATION 4 #1383

v
i

PAGE:



LEVEL 1.1.1 (DEC

OPTIONS IN EFFECT:

ISN 1
ISN 2
ISM 3
16N 4
ISN 3
ISN b
ISN 7
N 8
ISN ?
I 10
ISN 11
1N 812
YETATISTICSS
ISTATISTICS?

tll

1) VS FORTRAN

NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED
OPTIMIZE(0) LANGLVL{46) MOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(60)

I ST VU SRR SRR IR PP A PPPPPRT A2 IYTTITT!-

e t08se3tseaiderestas)atcleidddelesjissitaiitpitisiniistittidenitits

OO0t o000

SUBROUTINE DAB(DLAT,OLONG, GAST,RA4, DEC4,RAS, DECS)

DIURNAL ABERRATION

COMPUTES RIGHT ASCENSION AND DECLINATION DISPLACED BY DIURNAL
ABERRATION GIVEN THE UNAFFECTED RIGHT ASCENSION AND DECLINATION,
OBSERVERS LATITUDE AND LONGITUDE AND GREENWICH APPARENT SIDEREAL
TIME.

R = CONVERSION FACTOR FROM DEGREES TD RADIANS
Hl = APPROXIMATE HOUR ANGLE (DEGS)

GAST = INPUT GREENWICH APPARENT SIDEREAL TIME (HRS)

OLAT = INPUT OBSERVERS LATITUDE (DEGS)

OLONG = INPUT OBSERVERS LONGITUDE (DEBS)

RA4 = INPUT RIGHT ASCENSION UNAFFECTED BY DIURNAL ABERRATION (HR

DEC4 = INPUT DECLINATION UNAFFECTED BY DIURNAL ABERRATION (DEGS)
RAS = QUTPUT RIGHT ASCENSION DISPLACED BY DIURNAL ABERRATION (HR
DECS = OUTPUT DECLINATION DISPLACED BY DIURMAL ABERRATION (DEGS)

1898003 aeittrtttotostesiitopitiitessttifiesiiidocienitisiitdisttid)

IMPLICIT REAL#8{A-H,0-1)

REALLE DSIN,DCOS, DATAN

R=4.D0$DATAN(1.D0) /180.D0

Hi=(GAST-RA4) £15-0LONG

RAS=RA4+0, 000089003DCOS (OLATHR) #DCOS(HI¢R) /DCOS (DECAIR) /15
DECS=DEC4+0.000089D04DCOS (OLATR) $DSIN (H1 ¢R) $DSIN(DEC41R)
RAS=RA4+0, 000089D0XDCAS (OLATHR) $DCOS(HI SR} /DCOSIDECSHR) /15
H1={BAST-RAS) $15-0LONG

DECS=DEC4+0, 000089 DOSDCOS (OLATR) $DSIN (HI $R) RDSIN (DECTR)
RETURN

END

SOURCE STATEMENTS = 12, PROGRAM SIZE = 1086 BYTES, PROGRAM NAME = DAB  PAGE:  B.

NO DIAGNOSTICS GENERATEL.

11133¢ END OF COMPILATION S $£ei3x

DATE: JUL 19, 1984  TIME: 03:3B:1b NAME: MAIN

PABE:
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LEVEL 1.1.1 (DEC 81 VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:16 NAME: MAIN  PAGE:

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GDSTMT NODECK SOURCE TERM  OBJECT FIXED
OPTIMIZE(Q) LANGLVL(56) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT(40)

’-u.-‘-tll-ll--nl--2|I-||.--.3-----ll-l4.-u|-----5--l---ll-bclnl--lu-?-!-l--uu-S

RpiResipredottestotepiiaeiioatsbotoppRoiiobiiisheisiitetiiasiseinisis
ISN 1 SUBROUTINE DATA(JD,MA,LHAN,D,F,NL,NOB, TOB, TL, TR, AL ,ALAT)

c
€ ASTRONCHICAL DATA
L COMPUTES - PERTURBATIONS IN ECLIPTIC LONGITUDE AND LATITUDE AND
C LO6 OF RADIUS VECTOR OF SUN
C - ANNUAL ABERRATION CORRECTION TO ECLIPTIC LONGITUDE
€ OF SUN
- NUTATION IN ECLIPTIC LONGITUDE AND OBLIBUITY
~ APPARENT ECLIPTIC LONGITUDE AND LATITUDE AND TRUE
TRUE LOG OF RADIUS VECTOR OF SUN AND OBLIQUITY
BIVEN THE JULIAN EPHEMERIS DATE OF EPOCH,

JD
T
MA

C

£

C

)

c

C INPUT JULIAN EFHEMERIS DATE (DAYS)

c INTERVAL OF EPHEMERIS CENTURIES ELAPSED SINCE 1900 JAN 0.3
L OUTPUT SUN’S MEAN ANOMALY (DEES)

c LMAN = OUTPUT LONGITUDE OF MOONS MEAN ASCENDING NODE (DEGS)
C D = QUTPUT MEAN ELONGATION OF MOON FROM THE SUN (DEGS)
L

)

C

c

L

C

c

C

c

F = QUTPUT MOON’S MEAN ARGUMENT OF LATITUDE (DEGS)
L QUTPUT NUTATION IN LONBITUDE (DEBS)
NOB = QUTPUT NUTATION IN OBLIGUITY {(DEGS)
TOB = QUTPUT TRUE DBLIGUITY (DEBS)
T QUTPUT TRUE LONGITUDE OF SUN (DEGSI
TR OUTPUT TRUE DISTANCE FROM THE SUN {AU)
AL = OUTPUT APPARENT LONGITUDE OF SUN (DEES)
ALAT = QUTPUT APPARENT LATITUDE OF SUN (DEES)
193253820803 3800000080R 000 epeedtietatiisiiseteetiiiotoctiispiietete
IMPLICIT REAL$8(A-H,0-1)

H

15N

t3

ISN 3 REALEE JD,LMAN, A, MAY, NAM, MAJ, MAS, NAMN, ML, MLR, MOB., NL, NOB,
Y DSIN, DCOS, DTAN, DARSIN, DATAN
ISN 1 R=4.DOSDATAN(1 . D0} /180. DO
IN 5 T=(JD-2415020.D0) /34525. D0
I8N b ML=279. 49446BD0+26000. 76893008T+0, 0003000 THT
15N 7 MA=358, 475B3D0+35999. 04975D08T~, 00015DOT 4T
! 1N g C=(1.91946D0-0, 00479D0%T-0, 00001003 TIT) LIS IN (HASR)
& +(0.02009D0-0,0001D0FT) $DSIN (28MALR)
§ L +0.00029D0%DSIN(IIMAIR) +0,000005DOLDSIN (43MAR)
S B 9 NLR=0.0000306D0-0. 0000002D08T
& +(-0,0072741D0+0. 0000181008 T) $DCOS (MAR)

% +(-0.000091400+0. 0000005004 T) $DCOS(2SMALR)
& -0.0000013D0¥DCOS(TIMAIR)
MDB=2Z. 432294D0-0.,013013D0LT

L=
[
2
—
=)

c
' £ COMPUTE PERTURBATIONS IN ECLIPTIC LONBITY, LITUDE AND LOGR
C
I 11 MAY=212,60322D0+58317. J03BBDOLT+0, 00129D0S THT
ISN 12 FAN=319. 5290200+1 9139, 83922001 T+0,00018DOXTHT
I IN M MAJ=225, 32833D0+3034, $6202D0%T-0, 00072DOSTST
ISN 14 MAS=173. 46422D0+1221. 5314700%T-0. 0005DOSTET
IN 15 MAMN=294, 10471D0+477198, 8491100 T+0, 00919D0XT#T
ISN 16 0=350.7374900+445247. 1142200870, 001 44D0% T4T
' b | 17 F=11,2508900+481202. 0251 5D0%T~. 00321004 137
IEN 18 PLY=4.83810C0S ({299, 10167DO+MAY-MAIIR)




81) VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:16 NAME: DATA

‘lllltlllill'llllll2l.lllllllzlllll‘lll4lllllilllslll'llIllbIllllllll7l:lllllllB

LEVEL 1.1.1 (DEC
N 19
2
W
1
4 I
N
N 28
BN 2
C
C
c
! 7
N @

+0. 1148DC0S ( (148, 2+2EMAV-MA) IR)
+3, 5264DC0S ( (148, 31333D0+21MAV-21MAR) 1R)
+2.4974DCOS( (315, 943IIID0O+2EMAV-THMA) 1R)
+0, b644DCOS( (177, 71+3EMAV-JEHA) IR)
+1,55980C0S( (345, 25333D0+3EMAV-4£MA) KR)
+1,0244DC08 ({318, 15+34MAV-31MA) §R)
. 2130C0S( (206, 2+45MAV-43MA) SR)
+0. 1448DCOS( {195, 4+4IMAV-38HA) KR)
+). 1524DCOS( (343, S+4XNAV-LEHA) IR)
+0, 1231DCOS ({195, 3+3IMAV-7EMR) IR)
+), 1 544DCOS ( (359, 6+3EMAV-8EMA) IR)
PLM=0,27330COS ({217, 7-MAM+MA} IR)
& +2.0433DCOS( (343, 83833D0~2EMAM+ZEMA) IR)
% +1,77tDCOS( (200.40167-23HAM+NA) IR)
+0).1293DCOS ( (294, 2-38MAM+33MA} ER)
+0,4258DCOS{ (330. BE-3AMAN+2EMA) $R)
+), 5¢DC0S( (103, 18-48HAN+3IMA) ER)
+), SBSEDCAS { (334, 06-44MANE2INA) 1R)
+). 204%DCOS { (100, B-SEMAM+3EMA) IR)
+0, 13480005 (227, 4-6HARHAENA) IR)
J=0.1630DCOS( (198, 6-MAJ+2EMA) SR}
+7.208£DCOS( (179.53147D0-HAJ +HA) IR)
+2, 630005 ( (263, 21567D0-HAT) IR)
+2, 73130C0S ({87, 1450-2tMAJ+23HA) 3R)
+1, 513DC0S( (109, 49373D0-21MAJ+MA) IR
+0. 1648DCOS( (170, 5-3EMAJ+3ENA) (R)
+). S564DCOS( (B2, 45-3FMAJ+ZHMA) §R)
+0,214DCOS ( (98, 5-IEMAT+NR) 1R}
PLS=0, 419%DCOS( (100.5B-HAS+MA SR)
b +0,32¢DLOS( (269, 46-MAS)IR)
% +0.10B$DCOS ({290, 6-2EMASH2EMA) $R)
b +0,112¢000S((293.6-ZIMAS+HA) IR)
PLMN=5. 4543DSIN (DR} +0, 1 7TSDSIN( (D+MAMN) IR)
b -0,4248DSIN{ (D-MAMN) 3R} +0. 172¢DSIH ({D-HA) #R)
PLP=4, 408DSIN((231.19+20. 303T} 3R}
% +0.271DSINC(31.8+1191TIR)
Y +(1,88-0.024T) $DSIN((57.24+150. 271T) IR}
L +0.201DSIN( (315, 64893, 33T) 1R)
PL= {PLV+PLM+PLI+PLE+PLAN+PLF) /3600,
PLR=(234¥DCOS( (209, 08+MAV-MA) IR)
+6843DC0S ( (58, 21BIIDO+2IMAV-21MA) IR)
+10540C0S ( (87, S7+3EMAV-J1MA) 1R}
+150X0C0S( (225, 25+3EMAV-45HA) IR)
+20440C0S { (253, B2BIID0-21HAN+ZIMA) IR)
+70740C0S({B9. 545-MAJ +MA) $R) +13310DC0S (DXR) ) $1.0-8
PLAT=(0,092¢DCOS ( (93, 7+HAV-2KMA) KR)
Y +0,20¢0C05 ({151, B+IIMAV-4EMA) 1R)
& +0.1668DCOS( (265, 5-24MAT+NA) IR)
% +0.5473DSIN(FER)-0, 0473DSIN( (F-MAMN) tR)
& +0.06730C0S ((123+22HAV-3XMA) TRY) £3600.

R & g @

™ 1 2* G

" 2* 1

31’2‘?!’\‘2‘&‘

G BT W R K* Qe

7 R 2 K*

[

COMPUTE NUTATION IN ECLIPTIC LONGITUDE AND OBLIGUITY

LKAN=259, 18328001934, 14201D0XT+0, 00208D03TT
NL=¢-17, 2T33DSIN(LMANIR) +0.2092DSIN (LMANS21R)
Y -1, 2738DSINC (28LMAN-230+24F) $R)

PRBE:

10
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LEVEL 1.1.1 (DEC B1) VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:14 NAME: DATA

LI 29
TN 0
ISN 3

. I kY]

)

COISN I3
150 57}
ISN 35
1N 3b
ISN 37
IN b}

39
40
ISN 4
STATISTICSS
ASTATISTICSH

1!llltll¢1llllllillzllllllllIZIIIIIIlll4l!l..|||.5.‘.|'llllbujlllllu.:’lxll.lllla

L 40.126¢DSIN(MALR) -0, 2043DSINC (2KLMAN+21F) IR) ) 73400
NOB=(9. 21¥DCOS (LMANKR) -0, 094DCOS (25LMANER)
& +0.35230C0S ((2LMAN-2¢D424F) tR) ) /35600.D0

COMPUTE ANNUAL ABBERATION CORRECTION TO ECLIPTIC LONGITUDE

{ar]

E=0.01675104D0~0. 0000418D03T-0, 0000001 26D03TT
¥=101.22083300+1. 719180087+0. 00043008 T4T
ABL=20., 4963 (ESDCOS { {W-ML-C-PL-NL) $R)-1) /3500, / (10, DOLR)

COMPUTE APPARENT ECLIPTIC LONGITUDE, LATITUDE, TRUE RADIUS VECTOR
AND TRUE DBLIGUITY. '

Lor B or BN 2 B o ]

TL=HLAC+PL+NL

AL=TL+ABL

AL=AL-IDINT (AL/340.00)2360. 00
ALAT=PLAT

TLR=HLR+PLR

TR=10.D0%STLR

TOB=MOB+NOB

RETURN

END

SOURCE STATEMENTS = 41, PROGRAM SIZE = 7544 BYTES, PROGRAM NAME = DATA  PABE: 9,

NO DIAGNOSTICS GENERATED.

txs382 END OF COMPILATION & stsnts

]
]
]
]
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LEVEL 1.1.1 (DEC B1) VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:17

QPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED

TSN 1

ISN
IN
16N
ISN
ISN
&

0~ N = W N

RSTATISTICSE

STATISTICSS

OPTIMIZE(O) LANGLVL(&6) MOFIPS  FLAG(I) NAME(MAIN ) LINECOUNT(60)

L IS S PPN teelisinnneisdainannans L TP PP SPRRY 4 ST

(RS 823085313808 bttdasesrtitesstiseiiensisidissiitipisiisbiatitists
SUBROUTINE DEG(D,M,S,DD

DEGREES-MINUTES-SECONDS TO DECIMAL DEGREES CONVERSION
CONVERTS ANGLE IN DEGREES (OR HOURS), MINUTES AND SECONDS TO
AN ANGLE IN DECIMAL DEGREES (DR HOURS).

INPUT DEGREES (OR HOLRS) - INTEGER
INPUT MINUTES ~ INTEGER
= INPUT SECONDS - DOUBLE PRECISION
DD = OUTPUT DECINAL DEGREES (OR HOURS) - DOUBLE PRECISION
191380 28033838800372800830its8s02 0800008080000 80000 sReR R 2 RL)
REAL$S DD,S
INTEBER D,
DD=1ABS (D) +M/40, DO+5/3600.D0
IF¢D.LT.0.00)DD=-DD
RETURN
END

LI | I 1]

D
|
5

OO0 o o0

SOURCE STATEMENTS = 7, PROGRAM SIZE = 440 BYTES, PROGRAM NAME = DEE  PAGE:

MO DIAGNOSTICS GENERATED.

141353 END OF COMPILATION 7 nifint

NAME: MAIN

18

12.

PAGE:

12
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LEVEL 1.1.1 (DEC B1) Y5 FORTRAN DATE: JUL 19, 1984  TIME: 03:38:17 NAME: HAIN

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED
OPTIMIZE(0) LANGLVL(k&) NOFIPS  FLAG(I) NAME(MAIN ) LINECOUNT(&0)

‘llll‘lllll'lllllll2lllllllll3lllllllll4ll-.ll.ilﬁlllllllllél'llllllI7I'IIIIIIIB

(R38Rt seiiseebisstptstenttsipotittetriotticttiijioctpotisasbpissidisg

ISN 1 SUBROUTINE DMS(DD,D,M,S)
C
C DECIMAL DEGREES TO DEGREES-MINUTES-SECONDS CONVERSION
L CONVERTS ANGLE IN DECIMAL DEGREES (OR HOURS) TO AN ANGLE IN
C IN DEGREES (OR @OURS), MINUTES AND SECONDS.
c

C 0D = INPUT DECINAL DEGREES (OR HOURS) - DOUBLE PRECISION
C D = OUTPUT DEGREES (OR HOURS) - INTESER
C M = OUTPUT NINUTES - INTEGER
C S = OUTPUT SECONDS - DOUBLE PRECISION
CERPRSEITEREESIRIRERESSRRLIRLEansanestansantsssassnaassssssessnssssaass
1SN 2 REALY8 DD, S, DABS
IS 3 INTEEER D, N
1SN 4 D=IDINT{DD)
1SN 5 #=IDINT (DABS (DD-D) $60.D0)
ISN b S= (DABS (DD-D) 840, D0-H) 240,00
ISN 7 RETURN
1SN 8 END

¥STATISTICS®  SOURCE STATEMENTS = 8, PROGRAM SIZE = 472 BYTES, PROGRAM NAME = DMS  PAGE: 13.
ISTATISTICS®  NO DIAGNOSTICS GENERATED.

13ex1s END OF COMPILATION 8 18%13%

PAGE:

13



LEVEL 1.1.1 (DEC B1) VS FORTRAN DATE: JUL 19, 1984  TINE: 03:38:17

OPTIONS IN EFFECT: NOLIST NOMAP NOYREF  GOSTMT NODECK SOURCE TERM  (BJECT FIXED

ISN t
1SN 2
IN 3
15N 4
ISN 3
IGN b
1 7
15N 8
IEN ?
IN 10
ASTATISTICSS
¥STATISTICSK

OPTIMIZE(O) LANBLVL(66) NOFIPS  FLAG(I) NAME(MAIN ) LINECOUNT(&0)
‘lllltllllllll.llllzlllllllllzllll'llll‘llllll'lISIIIIIIlllblll‘l.lll?ltllllll's

(3933338883100 0 2 0R003 000800000080 000t 4R t0300¢00008828008R2082)
SUBROUTINE 6ST (UT,dD, T0B,NL,GAST)

TOB = INPUT TRUE OBLIBUITY (DEGS)

GMST = GREENWICH WEAN SIDEREAL TIME (HRS)

GAST = QUTPUT GREENWICH APPARENT SIDEREAL TIME (HRS)
30008 R0ET00i00 0000000 0000000000000 000t iRbttRRintatictitstilins

IMPLICIT REAL¥B(A-H,0-1)

REAL$S JD,ML,DCOS,DATAN

R=4.DOSDATAN(1.D0)/180.D0

T=(J0-2415020,00) /36325, 00

GMST=UT+6, 444065D0+2400, 0512620047+, 000026D05T4T

GAST=GMST+NL2DCOS (TOBR) /15,00

BAST=6AST-IDINT(GAST/24.00) ¥24.D0

RETURN

END

c

c GREENNICH APPARENT SIDEREAL TIME

C COMPUTES GREENWICH APPARENT SIDEREAL TIME GIVEN THE UNIVERSAL
C TIME, JULIAN DATE, TRUE OBLIQUITY AND NUTATION IN LONSITUDE OF
C DATE

C

C R = CONVERSION FACTOR FROM DEGREES TD RADIANS

” UT = INPUT UNIVERSAL TIME (HRS)

t JD = INPUT JULIAN EPHEMERIS DATE (DAYS)

c NL = INPUT NUTATION IN LONGITUDE (DEGS)

C

C

C

c

SOURCE STATEMENTS = 10, PROGRAM SIZE = 640 BYTES, PROGRAM NAME = BST  PAGE:

NO DIAGNOSTICS GENERATED.

183143 END OF COMPILATION 2 $31s$2

NAME: MAIN

14.

PAGE:
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LEVEL 1.1.1 (DEC 81) VS FORTRAN

OPTIONS IN EFFECT:

ISN i
1SN 2
1N I
ISN L
IN 5
ISN b
1N 7
1SN q
1M it
IEN 12
1M 13
15N 14
IEN 15
5K 16
$STATISTICSS
XSTATISTICSE

’Illl

DATE: JUL 19, 1984  TIME: 03:3B:17

NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED
OPTIMIZE(0) LANBLVL{6&) NOFIPS FLAB(I) NAME(MAIN ) LINECOUNT(60)

NAME: MAIN

xlcllllllllIll2ll.llllll3lllllllll‘lllllllllﬁlllllllllblllllll-l7l‘!llll"3

(31400582 00k RssiRi0titoRibitispiiboistissieisiociipiasiteciddits]

[or B I o B 2t B o B S o I o B aw B vy

3

SOURCE STATEMENTS = 14, PROGRAN SIZE = 852 BYTES, PROGRAM MAME = JDATE

SUBROUTINE JDATE(Y,M,D,UT,dD)

JULIAN DATE
COMPUTES JULIAN DATE GIVEN THE TIME, DAY, MONTH AND YEAR

INPUT YEAR ~ INTEEER

INPUT MONTH - INTEGER

INPUT DAY - INTEGER

UT = INPUT UNIVERSAL TIME (HRS)

0D = DAY INCLUDING FRACTIDNAL PART - DOUBLE PRECISION
J0 = OUTPUT JULIAN DATE (DAYS)

= oy <

131300008 02000 0000800072400 000000000000 200k0000t0RR00tbReeRitiReRett

IMPLICIT REAL8(A-H,0-2)
REALSS JD

INTEGER ,M,D,YY,MN,8,B

Yy=y

=N

IF (M, LE. 2 Y¥=Y~1

IF {1, LE. 2)NM=MH2

A=IDINT (YY/100.00}

B=2.D0-A+1DINT (A/4. 00

DD=D+UT/ 24,00

J0=TDINT {365, 25D08YY) +1IDINT (30, 5001008 (MM+1)) +0D+1720994, S0+B
RETURN

END

NO DIAGNOSTICS GENERATED.

$x188% END OF COMPILATION 10 f¥ifit

PAGE:

15,
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LEVEL 1.1.1 (DEC

OPTIONS IN EFFECT:

15N 1
ISN 2
N 3
ISN 4
I 3
15N ]
IN 7
ISN g
ISN 9
ISN 10
ISN 11
TSN 2
ISN 13
1SN 14
ISN 13
I 16
ISN 17
SN 18
I8N 19
ISN 20
ISN A
IN 2
ISN 2
1 2b
ISN 27
TSN 28
RSTATISTICSS
BSTATISTICSS

1.

81) VS FORTRAN

DATE: JUL 19, 1984  TIME: 03:3B:17

NOLIST NOMAP NOXREF  GOSTNT NODECK SOURCE  TERM  OBJECT FIXED
OPTIMIZE(0) LANGLVL(46) NOFIPS  FLAGII) NAME(MAIN ) LINECOUNT(L0)

Y T VUUS O RPS. SRR FRPPPPRE. PP TP PPPTPY AL IFETRTY

R 0128328100883 20020nei00iasidetsitaiissiittiintittaiiiptidsdisiiiRiid

OO0 OoOOMOOonr O oOn

SOURCE STATEMENTS = 25, PROGRAM SIZE = 2374 BYTES, PROGRAM NAME = UT  PAGE:

SUBROUTINE NUT (NL,NCB, TOR,RAZ, DEC2,RAS, DECT)

NUTATION

COMPUTES RIGHT ASCENSION AND DECLINATION REFERRED TD THE
TRUE ECLIPTIC OF DATE FROM THE RIGHT ASCENSION AND
DECLINATION REFERRED TO THE MEAN ECLIFTIC OF DATE GIVEN
HA,LMAN, D, F NL, TOB,

R = CONVERSION FACTOR FROM DEGREES TO RADIANS

M INPUT NUTATION IN LONGITUDE (DEGS)

NOB = INPUT MUTATION IN OBLIQUITY (DEBS)

TOB = INPUT TRUE OBLIGUITY OF DATE (DEGS)

RA2 = INPUT RIGHT ASCENSION REFERRED TO MEAN EQUINOX OF DATE (HRS
DEC2 = INPUT DECLINATION REFERRED TO MEAN EQUINOX OF DATE (DEGS)
RA3 = QUTPUT RIGHT ASCENSION REFERRED TO TRUE EQUINOX OF DATE (HR
DECI = QUTPUT DECLINATION REFERRED TO TRUE EGUINOX OF DATE (DEGS!

19308250 0300t netotnspiitaisiaetisatasiisiiiotsisbissitititesibiisnl)

IMPLICIT REAL28(A-H,0-2)
REAL$S NL,NOB,DSIN,DCOS, DTAN, DARSIN, DATAN,
b N11,M12,N13,N21 N22,N23, N3, N2 NG T
R=4,DOIDATAN(1.D0}/180.D0
A=TOB+NDE
N11=DCOS (NLSR)
N12=-13DSIN(NLIR) $DCOS (TOBLR)
Ni3=-11DSIN(NLSR} $DSIN(TORIR)
N21=DCOS (A%R) 2DSIN(NLIR)
N22=DCOS (ASR) $DCOS (NLSR) $DCOS (TOBIR) +DSIN (AXR}$DSIN(TOBIR)
23=DCOS (A3R) 10COS (NLYR) $DSIN(TOBR) ~DS INCALR) $DCOS (TOBIR)
NZ1=DSIN(ASR) $DSIN(M.3R}
N32=DSIN(AZR) BOCOS (NLER) $DCOS (TOBRR) -DCOS (ASR) $DSIN(TORXR)
NIZ=DSIN(ASR) $DCOS (NLIR) $DSIN(TOBSR) +DCOS (ASR) $DCOS (TORIR)
X2=0COS (DEC22R) L0COS (RAZEISER)
Y2=DCOS (DEC2¢R) 1DSIN(RAZR154R)
12=0SIN{(DEC2IR)
L3=NLLEX24N128Y2¢N1ZKI2
Y3=N21KX24+N228Y2 23512
J=N31EI2AT2LY24NII0I2
RA3=DATAN(Y3/X3) /15/R
IF(%3.17.0.D0) RAI=RAZ+12.D0
IF (¥3.6E.0.D0. AND, Y3.LT.0,00) RA3=RAI+24.D0
DECI=DARSIN(ZZ) /R
RETURN
END

NO DIAGNOSTICS GENERATED.

1ex11t END OF COMPILATION 11 333188

NAME: MAIN

15,

PAGE:

16

—n — — — — — m— L | llll'

n



l LEVEL 1.1.1 (DEC 81) VS FORTRAN DATE: JuL 19, 1984  TIME: 03:38:17 NAME: MAIN  PAGE:
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.M‘

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED

IEN 1
ISN 2
1SN N
ISN 4
15N 3
1SN b
IN 7
ISN 8
ASTATISTICSE
ISTATISTICSS

OPTIMIZE{(0) LANGLVL(b&) NOFIPS FLAG(I} MAME(MAIN ) LINECOUNT(80)

L O B PP PR SR M Y MFRTY % PN

(B0 piiRioetRisiisissiaciiisteiptiiifesiitiateprtesibintintbiibespiss
SUBROUTINE PM(JD,RAG, DECO, CRA, DDEC,RAL, DECT)

PROPER MOTION

COMPUTES RIGHT ASCENSION AND DECLINATION OF CURRENT EPOCH
AND CATALOG EBUINOX GIVEM THE RIGHT ASCENSION AND
DECLINATION OF THE CATALOG EPOCH AND EBUINOX, CENTENIAL PROPER
MOTIONS IN RR AND DEC, AND THE JULIAN DATE.

RAO
IECO
JD
IRA

INPUT CATALOGED RIGHT ASCENSION FOR 1950.0 (HRS)
INPUT CATALOGED DECLINATION FOR 1950.0 (DER)
INPUT JULIAN DATE (DAYS)
INPUT CENTENIAL PROPER MOTION IN RIGHT ASCENSIOM (HRS)
DDEC = INPUT CENTENIAL PROPER MOTION IN DECLINATION (DEGS)
10 INTERVAL OF TPIC CENTURIES ELAPSED SINCE 1950.0
RA1 = QUTPUT RIGHT ASCENSION REFERRED TO CURRENT EPOCH AND
CATALOGED EQUINOX (HRS)
DEC! = OUTPUT DECLIMATION REFERRED TO CURRENT EPOCH AMD CATALOGED
EGUINOX (DEE)
b3to30 000 00t b e0tiaetiictiReteceestpiiieaaitiothatetitsiinsiistsitis
IMPLICIT REALIB(A-H,0-1)
REAL$E JD
70=(JD-2433282.42300) /36524. 219900
RA1=RAC+DRAITD
DEC1=DECCHDDECSTO
RETURN
END

[or 2L or B o BN or B o BF o B o IR o TN w }

[ e B r B o B e B o B 30 B or B o |

SOURCE STATEMENTS = 8, PROGRAM SIZE = 382 BYTES, PROGRAM NAME = PM  PAGE: 17,

NO DIAGNOSTICS GENERATED,

FE581r END OF COMPILATION 12 sf3x%¢
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LEVEL 1.1,1 (DEC  81) VS FORTRAN DATE: JUL 19, 1984  TIME: 03:38:17

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTNT NODECK SOURCE  TERM OBJECT FIXED
OPTIMIZE(O) LANGLVL(86) NDFIPS FLAG(I) NAME(MAIN ) LINECOUNT(40)

18N 1
ISN 2
1N g
ISN 4
1N 3
IN &
IN 7
ISN g
1M 9
ISN 10
ISN i
IN 12
ISN 13
ISN 14
N 15
ISN 16
| 17
ISN 18
1N 19
ISN 20
15N 21
ISN 22
1SM 3
IEN 24
ISN 25
1SN 27
IN 29
ISM 30
IN 3
FSTATISTICSS

ISTATISTICSY

NAME: MAIN  PABE: 18

S RN FRPT e2ereiienns S JUUUTTUNY TORPURUE. IPPRUY FPPPPPPPRY I PRRTTT g

C!Xtt!t!!X!l!!X‘X!!t!!tllt!t!!Xlttlttl!!X!tl!lll1!!11!1!11!!!:!1!!!!!!!1
SUBROUTINE PREC(JD,RA1,DEC1,RA2,DEC2)

PRECESSION

COMPUTES THE MEAN RIGHT ASCENSION AND DECLINATION OF A STAR
GIVEN THE JULIAN DATE, THE RIGHT ASCENSION
AND DECLINATION FOR THE EPOCH 1950.0 CORRECTED FOR PROPER
HOTION.

JD = INPUT JULIAN EPHEMERIS DATE OF CURRENT EPOCH (DAYSI
T0 = INTERVAL OF TROPICAL CENTURIES ELAPSED SINCE 1930.0
(1D=2433282.423)

MOTION (HRS)
DEC1 = INPUT DECLINATION OF 1950.0 EQUINDX CORRECTED FOR PROPER
MOTION (DEG)

RA2 = OUTPUT MEAN RIGHT ASCENSION FOR CURRENT EPOCH (HRS)
DECZ = OUTPUT MEAN DECLINATION FOR CURRENT EPOCH (DEGS)
PCTL T e i ta0000s20aspatteaslittiliesatisatistiittifnssisiiiiiinios,
IMPLICIT REAL$8(A-H,0-1)

REALLS 10,DSIN,DCOS, DTAN, DARSIN, DATAN
R=4.DOXDATAN(1.D01/180.D0

T0=(JD-2433282, 42300} /36524. 217900

IETA=0. 5302633008 T0+0, 00008394T081240, 000003¥TO2XZ

1=IETA+0, 00021978708 £2

THETA=0. 55673768700, 0001 1834T0432+0.00001 17270243

P{1=0COS (Z$R) 10COS (THETABR) $DCOS (ZETASR) -DSINCINR) $DSIN (ZETAKR)
P12=-13DCOS (ZtR) *DCOS (THETARR) SOSIN(ZETAIR)
t  -DSIN(I$R)$DCOS(ZETALR)

P13=-140COS(Z2R) $DSIN(THETAIR)

P21=DSIN(Z4R) 1DCOS (THETAKR) $DCOS (ZETASR) +DCOS (Z4R) SDSIN (ZETAKR)
P22=-1 $DSIN(Z1R) £DCOS (THETARR) XDSIN(ZETRIR)
% +DCOS(Z1R)$0COS(IETASR)

P23=-12DSIN(Z1R) tDSIN(THETAIR)

PI1=DSIN{THETASR) $DCOC (ZETAXR)

P32=-13DSIN(THETASR) tDSIN(IETALR)

PI3=DCOS(THETAIR)

¥1=0COS(DECL¥R) £0COS (RA1$151R)

Y1=DCOS {DECILR) SDSIN(RAT#15IR)

11=DSIN(DEC1%R)

Y2=P11 X1 +P128Y1+P 13K1]

Y2=P2{1X1+P221Y14P23871

12=P31 311 4PT28Y 1+PI3R1L

RA2=DATAN{Y2/X2) /13/R

IF(X2.L1.0.D0) RA2=RAZ+12.D0

IF{¥2.6E.0.D0.AND. Y2,LT,0.00} RA2=RA2+24.D¢

DEC2=DARSIN(I2}/R

RETURN

END

COoOOnNDEoOoOOoOOaoooa0o

SOURCE STATEMENTS = 29, PROGRAM SIZE = 2625 BYTES, PROGRAM NAME = PREC

NO DIAGNOSTICS GENERATEL.

RA1 = INPUT RIGHT ASCENSION OF 1950.0 EQUINOX CORRECTED FOR PROPE

PRBE:

18.
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LEVEL 1.1.1 (DEC 81) 5 FORTRAN DATE: JUL 19, 1984  TIME: 03:38:17

11158t END OF COMPILATION 13 83483t

NAME: PREC

PAGE:

19




LEVEL 1.1.1 (DEC BI) VS FORTRAN DATE: JUL 19, 19684  TIME: 02:38:17

OPTIONS IN EFFECY: MOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED

ISN 1
ISN 2
1N 3
I8N 4
ISN 5
ISN 6
18N 7
IsN 8
15N 10
IN 12
ISN 13
IN 14
TSTATISTICSS

ISTATISTICSE

OPTIMIZE(O) LANGLVL(66) NOFIPS FLAG(I) NAME(MAIN ) LINECOUNT (50

S R . S PP M AN PR

[R8i88338300080003000000000008000totiiRtbittttitiitcisiopetisiipiisestd
SUBROUTINE RADS (AL,ALAT, TOB, RA,DEC)

RIGHT ASCENSION & DECLINATION OF THE SUN

COMPUTES APPARENT GEQCENTRIC RIGHT ASCENSION AND DECLINATION
GIVEN THE APPARENT GECCENTRICLATITUDE AND LONBITUDE OF THE
SUN AND THE TRUE OBLIGUITY OF THE ECLIPTIC.

R =C ONVERSION FAC TOR FROM DEGREES TO RADIANS
AL = APPARENT GEOC ENTRIC LONGITUDE DF THE SUN (DEES)
ALAT - APPARENT BEOC ENTRIC LATITUDE OF THE SUN (DEBS)
TOB = TRUE OBLIGUITY (DEGS)
RA = APPARENT RIGHT ASC ENSON OF THE SUN (HRS)
DEC = APPARENT DEC LINATION (DEGS)
193483003003 00000t ebitheiaseotitaiotioptiincitstitisyceiittiisciitots)
IMPLICIT REAL$8(R-H,0-1)
REALS8 DSIN,DCOS,DARSIN, DATAN
R=42DATAN(1.D0) /180
{=0COS (ALATSR} $DCOS (ALAR)
U=DCOS (ALATAR) $DSIN(ALIR) $0COS (YOBIR)-DSIN (ALATR) $DSIN(TOEIR)
RA=DATAN(U/V) /R/1S
IF(V,LT.0.00)RA=RA+12
[F(V,67.0.00.AND, i, LT.0.D0IRA=RA+24
DEC=DARSIN(DCOS(ALATSR) tDSIN (AL¥R) $DSIN(TOBIR) +DSIN(ALATIR)
Y  tDCOS(TOBLRY ) /R
RETURN
END

OO0 0000

SOURCE STATEMENTS = 2, PROGRAM SIZE = 1128 BYTES, PROGRAM NAME = RADS  PAGE:

NO DIAGNOSTICS GENERATED.

Txeest END OF COMPILATION 14 fgxasee

NAME: MAIN

PAGE:
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LEVEL 1.1.1 (DEC 81) VS FORTRAN

DATE: JUL 19, 1984  TIME: 03:3B:17 NAME: MAIN

OPTIONS IN EFFECT: NOLIST NOMAP NOXREF  GOSTMT NODECK SOURCE TERM  OBJECT FIXED

ISN

ISN
1N
ISN
I
ISN

1
i

ISN

o~ o U o AP

OPTIMIZE{0) LANGLVL(&6} NOFIPS  FLAG{I) NAME(MAIN ) LINECOUNT(40)
tllllxlllllllll.llizlll lllll IEIIIllllll4lllllllll5lll!lll'lblllll'l'l7ltllll"le

Relpeeaniedditatiteitiniigspatiesiotiieiitaeisnisttsissieitijasseseiin
SUBROUTINE SDC(HA,ZD,TR,SD)

c

C SEMI-DIAMETER CORRECTION

C COMPUTES THE SEMI-DIAMETER CORRECTION AND APPLIES IT TO THE

) OBSERVED HORIZONTAL ANGLE MEASURED CLOCKWISE FROM THE RO TO THE
c SUN GIVEN THE TRUE DISTANCE TO THE SUN, THE OBSERVED IENITH

E ANGLE AND THE OBSERVED HORIZONTAL ANGLE.

C

C TR = TRUE RADIUS VEC TOR (AU)

C 1D = IENITH DISTANC € (DEGS)

C §D = SEMI-DIAMETER (DEGS)

C HA = HORIZONTAL ANGLE (DEGS)
Beiiotietaiatetiistiiipestiofoeidstithsiieottetitoshipstsepiptisitiis]

IMPLICIT REAL1B(A-H,0-1)
REALXB DSIN,DATAN
R=43DATAN(1.D0}/180
SD=0, 266994/ TR
HA=GD/DSIN(ZDIR) +HA
RETURN

END

PAGE:
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