Algorithms for Azimuth Determination

by

M.R. Craymer and R.C. Gunn

Survey Science, Erindale College

University of Toronto

Mississauga, Ontario, L5L 1C6

1984

ABSTRACT

This paper provides the expressions necessary to determine astronomic azimuths from observations on the sun or polaris without recourse to astronomical tables. No attempt is made here to define concepts or theory. It is merely intended to provide only the mathematical expressions that may be programmed into a computer or calculator for azimuth determination without reference to any astronomical tables. For a detailed treatment of the theory see Craymer [1984].
Algorithms for Azimuth Determination
M.R. Craymer and R.C. Gunn

Addendum and Errata

1. Accuracy of Algorithms

The algorithms presented in this paper are intended to provide accuracies of the order of 1 second of arc in both right ascension and declination. Reference should be made to Craymer (1984) for additional terms in many of the equations if greater accuracy is desired.

Furthermore, these algorithms are based upon the FK4 Star Catalogue and the 1964 system of astronomical constants. In 1984 a new system of constants and theory of notation superseded the old one. The effective difference between the two systems may be neglected, however, for the accuracies proposed here.

2. §3.3 Removal of the Elliptical Aberration Correction from the Catalogued Coordinates

The FK4 Star Catalogue lists the right ascension and declination of stars with the corrections for the effect of elliptical aberration already applied. For precise updates (i.e., for accuracies of better than 0.2 seconds of time), this correction should be removed from the catalogued values prior to updating. The correction, computed for the date of observation, must then be re-applied after the update (see §3.8).

If this high accuracy is not required, sections 3.3 and 3.8 may be omitted. The accuracies in this case will be of the order of the difference between the corrections for the catalogue and observation epochs (e.g., about 0.2 seconds of time over a period of about twenty-five years).

On the other hand, if the elliptical aberration correction is to be removed, the following values of right ascension and declination should be used in place of the catalogued ones (i.e., neglect the equations in section 3.3):

\[\alpha_0 = \text{right ascension of polaris for 1975.0 uncorrected for annual elliptical aberration} \]
\[= 31.858302 \, \text{(deg.)} \]

\[\delta_0 = \text{declination of polaris for 1975.0 uncorrected for annual elliptical aberration} \]
\[= 89.149867 \, \text{(deg.)} \]
These values should be used for the proper motion correction in section 3.4.

3. §3.7 Annual Circular Aberration Correction

In the equation for \(\Delta \delta_A \), replace \(\tan \) with \(\tan \cos \delta_N \).

4. §3.8 Annual Elliptical Aberration Correction

The equations given in this section should only be used when the elliptical aberration corrections have been removed from the catalogued coordinates.

There is an error in the equations for \(\Delta \alpha_E \) and \(\Delta \delta_E \). The constant coefficient in both equations should be 0.343 instead of -20.496.

5. Errors in First Version of the Paper

§1.2 Time Intervals - ignore the equation for \(T_m \); it should not be used anywhere in the paper.

§1.6 Greenwich Apparent Sidereal Time - replace \(T_m \) with \(T_e \) in the equation for GMST.

6. Acknowledgements

We would like to acknowledge Mr. Steve Balaban for his painstaking testing of these algorithms while on assignment in Libya. His efforts have revealed most of the errors reported here. Interestingly, the results of his testing have been better than 0.02 seconds of time in right ascension and 0.1 seconds of arc in declination.

\[\text{§1.2} \quad \text{GMST} = UT + 6.646066 + \ldots \]

\[\text{§3.1} \quad \alpha_c = 2.1240350 \text{ (hr)} \]
TABLE OF CONTENTS

1. Preliminary Data
 1.1 Julian Dates
 1.2 Time Intervals
 1.3 Orbital Parameters
 1.4 Nutation Parameters
 1.5 Obliquity of the Ecliptic
 1.6 Greenwich Apparent Sidereal Time

2. Solar Update
 2.1 True Ecliptic Longitude of the Sun
 2.2 True Ecliptic Latitude of the Sun
 2.3 True Radius Vector of the Sun
 2.4 Annual Circular Aberration Correction to the Ecliptic Longitude
 2.5 Conversion from Ecliptic to Right Ascension System
 2.6 Diurnal Aberration Correction
 2.7 Semi-Diameter Correction to the Horizontal Angle

3. Polaris Update
 3.1 FK4 Catalogued 1975.0 Data for Polaris
 3.2 Time Intervals
 3.3 Removal of the E Terms of Aberration from the Catalogued Coordinates
 3.4 Proper Motion Correction
 3.5 Precession Correction
 3.6 Nutation Correction
 3.7 Annual Circular Aberration Correction
 3.8 Annual Elliptical Aberration Correction
 3.9 Diurnal Aberration Correction and Final Apparent Coordinates

4. Azimuth Determination
 4.1 Hour Angle Solution
 4.2 Zenith Distance Solution
 4.3 Azimuth of the Reference Object

5. Concluding Remarks
1. Preliminary Data

The following parameters must be computed before updating the astronomic coordinates of both the sun and polaris.

1.1 Julian Dates

\[JD (1900, \text{Jan } 0.5 \, \text{UT}) = 2415020.0 \, \text{(days)} \]

\[JD (1975.0) = 2442413.478 \, \text{(days)} \]

\[JD \, \text{(for Year=\(Y\), Month=\(M\), day=\(D\), Universal Time=UT)} \]

\[= \text{INT}(365.25 \, Y) + \text{INT}(30.6001(M+1)) + D + \text{UT}/24 + B + 1720994.5, \]

where

\[A = \text{INT}(Y/100) \]

\[B = 2 - A + \text{INT}(A/4) \]

and

\[\text{if } M \leq 2, \, Y = Y - 1 \]

\[\text{M} = \text{M} + 12 \]

Note that INT indicates the truncated integer value (i.e., INT(3.291) = 3).

1.2 Time Intervals

\[T_e = \text{interval of ephemeris centuries elapsed since } 1900, \, \text{Jan. } 0.5 \, \text{UT} \]

\[= (JD - 2415020.0) / 36525 \, \text{(ephemeris centuries)} \]
1.3 Orbital Parameters

\[M_s = \text{mean anomaly of sun} \]
\[= 358.475833 + 35999.04975 \, T_e - 0.00015 \, T_e^2 - \]
\[- 0.000003 \, T_e^3 \text{ (deg.)} \]

\[M_{mn} = \text{mean anomaly of moon} \]
\[= 296.104608 + 477198.849108 \, T_e + 0.009192 \, T_e^2 + \]
\[+ 0.000014 \, T_e^3 \text{ (deg.)} \]

\[M_V = \text{mean anomaly of venus} \]
\[= 212.603222 + 58517.803875 \, T_e + 0.001286 \, T_e^2 \text{ (deg.)} \]

\[M_m = \text{mean anomaly of mars} \]
\[= 319.529022 + 19139.859219 \, T_e + 0.000181 \, T_e^2 \text{ (deg.)} \]

\[M_J = \text{mean anomaly of jupiter} \]
\[= 225.32833 + 3034.96202 \, T_e - 0.000722 \, T_e^2 \text{ (deg.)} \]

\[M_{Sn} = \text{mean anomaly of saturn} \]
\[= 175.46622 + 1221.55147 \, T_e - 0.000502 \, T_e^2 \text{ (deg.)} \]

\[D = \text{mean elongation of moon from sun} \]
\[= 350.737486 + 445267.114217 \, T_e - 0.001436 \, T_e^2 \text{ (deg.)} \]

\[F = \text{mean argument of ecliptic latitude of moon} \]
\[= 11.250889 + 483202.02515 \, T_e - 0.003211 \, T_e^2 \text{ (deg.)} \]

\[\Omega = \text{longitude of mean ascending node of moon} \]
\[= 259.183275 - 1934.142008 \, T_e + 0.002078 \, T_e^2 \text{ (deg.)} \]

\[\omega = \text{mean longitude of perihelion} \]
\[= 101.220833 + 1.719175 \, T_e + 0.000453 \, T_e^2 \text{ (deg.)} \]

\[\omega' = \text{mean longitude of perigee} \]
\[= \omega + 180 \text{ (deg.)} \]
1.3 Orbital Parameters (cont'd)

\(e = \text{eccentricity of earth's orbit} \)
\[= 0.01675104 - 0.00004180 \, T_e - 0.00000013 \, T_e^2 \]

1.4 Nutation Parameters

\(\Delta \lambda_N = \text{nutation in ecliptic longitude} \)
\[= -17.233 \sin \Omega + 0.209 \sin 2\Omega - 1.273 \sin(2\Omega - 2D + 2F) + \]
\[+ 0.126 \sin M - 0.204 \sin(2\Omega + 2F) \text{ (arcsec.)} \]

\(\Delta \epsilon_N = \text{nutation in obliquity} \)
\[= 9.210 \cos \Omega - 0.090 \cos 2\Omega + 0.552 \cos(2\Omega - 2D + 2F) + \]
\[+ 0.088 \cos(2\Omega + 2F) \text{ (arcsec.)} \]

1.5 Obliquity of the Ecliptic

\(\epsilon = \bar{\epsilon} + \Delta \epsilon_N, \)

where

\(\bar{\epsilon} = \text{mean obliquity of the ecliptic} \)
\[= 23.452294 - 0.013013 \, T_e - 0.000002 \, T_e^2 \text{ (deg.)} \]

1.6 Greenwich Apparent Sidereal Time

\(\text{GAST} = \text{Greenwich apparent sidereal time} \)
\[= \text{GMST} + \Delta \lambda_N \cos \epsilon, \)

where

\(\text{GMST} = \text{Greenwich mean sidereal time} \)
\[= UT + 6.646006 + 2400.051262 \, T_e + 0.000026 \, T_e^2 \text{ (hr.)} \]

\(\Delta \lambda_N \) is in hours
2. **Solar Update**

The following sequence of expressions were derived by Newcomb [1898]. These give the apparent astronomic coordinates \((\alpha, \delta)\) of the sun.

2.1 **True Ecliptic Longitude of Sun**

\[
\lambda = \text{true (geometric) longitude of the sun} = L + C + \Delta \lambda_{LP} + \Delta \lambda_{mn} + \Delta \lambda_P + \Delta \lambda_N,
\]

where

\[
L = \text{mean longitude of the sun} = 279.696678 + 36000.768925 T_e + 0.000303 T_e^2 \text{ (deg.)}
\]

\[
C = \text{equation of the centre} = (1.9194603 - 0.0047889 T_e - 0.0000144 T_e^2) \sin M_S +
+ (0.0200939 - 0.0001003 T_e) \sin 2M_S +
+ 0.0002928 \sin 3M_S + 0.0000050 \sin 4M_S \text{ (deg.)}
\]

\[
\Delta \lambda_{LP} = \text{long period perturbations in longitude} = 6.40 \sin(231.19 + 20.20 T_e) +
+ 0.266 \sin(31.80 + 119.00 T_e) +
+ 1.882 \sin(57.24 + 150.27 T_e) +
+ 0.202 \sin(315.60 + 893.30 T_e) \text{ (arcsec.)}
\]

\[
\Delta \lambda_{mn} = \text{lunar perturbation in longitude} = 6.454 \sin D + 0.013 \sin 3D + 0.177 \sin(D + M_{mn}) -
- 0.424 \sin(D - M_{mn}) + 0.039 \sin(3D - M_{mn}) -
- 0.064 \sin(D + M_S) + 0.172 \sin(D - M_S) -
- 0.013 \sin(D - M_{mn} - M_D) \text{ (arcsec.)}
\]
2.1 True Ecliptic Longitude of Sun (cont'd)

\[\Delta \lambda_p = \text{planetary perturbation in longitude} \]

\[= 4.838 \cos(299.102 + M_v - M_s) + 0.116 \cos(148.900 + 2M_v - M_s) + \]
\[+ 5.526 \cos(148.313 + 2M_v - 2M_s) + 2.497 \cos(315.943 + 2M_v - 3M_s) + \]
\[+ 0.666 \cos(177.710 + 3M_v - 3M_s) + 1.559 \cos(345.253 + 3M_v - 4M_s) + \]
\[+ 1.024 \cos(318.150 + 3M_v - 5M_s) + 0.210 \cos(206.200 + 4M_v - 4M_s) + \]
\[+ 0.144 \cos(195.400 + 4M_v - 5M_s) + 0.152 \cos(343.800 + 4M_v - 6M_s) + \]
\[+ 0.123 \cos(195.300 + 5M_v - 7M_s) + 0.154 \cos(359.600 + 5M_v - 8M_s) + \]
\[+ 0.273 \cos(217.700 - M_v + M_s) + 2.043 \cos(343.888 - 2M_v + 2M_s) + \]
\[+ 1.770 \cos(200.402 - 2M_v + M_s) + 0.129 \cos(294.200 - 3M_v + 3M_s) + \]
\[+ 0.425 \cos(334.880 - 3M_v + 3M_s) + 0.500 \cos(105.960 - 4M_v + 3M_s) + \]
\[+ 0.585 \cos(334.060 - 4M_v + 4M_s) + 0.204 \cos(100.800 - 5M_v + 3M_s) + \]
\[+ 0.154 \cos(227.400 - 5M_v + 4M_s) + 0.101 \cos(95.300 - 6M_v + 3M_s) + \]
\[+ 0.106 \cos(222.700 - 7M_v + 4M_s) + 0.163 \cos(198.600 - 7M_v + 2M_s) + \]
\[+ 7.208 \cos(179.532 - M_v + M_s) + 2.600 \cos(263.217 - M_v) + \]
\[+ 2.731 \cos(87.145 - 2M_v + 2M_s) + 1.610 \cos(109.493 - 2M_v + 3M_s) + \]
\[+ 0.164 \cos(170.500 - 3M_v + 3M_s) + 0.556 \cos(82.650 - 3M_v + 2M_s) + \]
\[+ 0.210 \cos(98.500 - 3M_v + M_s) + 0.419 \cos(100.580 - 3M_v + M_s) + \]
\[+ 0.320 \cos(269.460 - M_v) + 0.108 \cos(290.600 - 2M_v + 2M_s) + \]
\[+ 0.112 \cos(293.600 - 2M_v + 3M_s) \text{ (arcsec.)} \]

\[\Delta \lambda_N = \text{nutation in longitude (see § 1.4)} \]
2.2 True Ecliptic Latitude of the Sun

\(\beta = \text{true (geometric) latitude of the sun} \)
\[= \Delta \beta_{mn} + \Delta \beta_p \]

where

\(\Delta \beta_{mn} = \text{lunar perturbations in latitude} \)
\[= 0.576 \sin \phi \text{ (arcsec.)} \]

\(\Delta \beta_p = \text{planetary perturbations in latitude} \)
\[= 0.210 \cos(151.8 + 3N_7 - 4M_7) + 0.166 \cos(265.5 - 2N_7 + M_7) \text{ (arcsec.)} \]

2.3 True Radius Vector of the Sun

\(R = \text{true (geometric) radius vector of sun} \)
\[= 10^{\log R} \]

where

\(\log R = \text{natural logarithm of radius vector} \)
\[= \log \overline{R} + d(\log R)_{mn} + d(\log R)_p \]

\(\log \overline{R} = \text{logarithm of mean radius vector} \)
\[= 0.00003057 + (-0.00727412 + 0.00001814 T_e) \cos M_s - \]
\[- 0.00009138 \cos 2M_s - 0.00000145 \cos 3M_s \]

\(\Delta (\log R)_{mn} = \text{lunar perturbations in logarithm of radius vector} \)
\[= 0.00000134 \cos D \]

\(\Delta (\log R)_p = \text{planetary perturbations in logarithm of radius vector} \)
\[= 0.00000236 \cos(209.080 + M_7 - M_s) + 0.00000684 \cos(58.318 + 2M_7 - M_s) + \]
\[+ 0.00000087 \cos(226.700 + 2M_7 - 3M_s) + 0.00000105 \cos(87.570 + 3M_7 - 3M_s) + \]
\[+ 0.00000150 \cos(255.250 + 3M_7 - 4M_s) + 0.00000206 \cos(253.828 - 2M_s + 2M_7) + \]
\[+ 0.00000707 \cos(89.545 - M_7 + M_s) \]
2.4 Annual Aberration Correction to the Ecliptic Longitude
\[\lambda_A = \text{apparent longitude of sun corrected for annual aberration} \]
\[= \lambda + \Delta \lambda_A \]
\[\beta_A = \text{apparent latitude of sun corrected for annual aberration} \]
\[= \beta \]

where
\[\Delta \lambda_A = \text{annual aberration correction to longitude} \]
\[= 20.496 \left(e \cos \left(\omega - \lambda_0 \right) - 1 \right) \]

2.5 Conversion from Ecliptic to Right Ascension System
\[\alpha_A = \text{apparent right ascension of sun corrected for annual aberration} \]
\[= \arctan \left(\frac{\cos \beta_A \sin \lambda_A \cos \varepsilon - \sin \beta_A \sin \varepsilon}{\cos \beta_A \cos \lambda_A} \right) \]
\[\delta_A = \text{apparent declination of sun corrected for annual aberration} \]
\[= \arcsin \left(\cos \beta_A \sin \lambda_A \sin \varepsilon + \sin \beta_A \cos \varepsilon \right) \]

2.6 Diurnal Aberration Correction
\[\alpha_D = \text{apparent right ascension of sun corrected for diurnal aberration} \]
\[= \alpha_A + \Delta \alpha_D \]
\[\delta_D = \text{apparent declination of sun corrected for diurnal aberration} \]
\[= \delta_A + \Delta \delta_D \]

where
\[\Delta \alpha_D = \text{diurnal aberration correction to right ascension} \]
\[= 0.32 \cos \theta \ \cosh_A \ \sec \delta_A \ \text{(arcsec.)} \]
\[\Delta \delta_A = \text{diurnal aberration correction to declination} \]
\[= 0.32 \cos \theta \ \sinh_A \ \sin \delta_A \ \text{(arcsec.)} \]
2.6 Diurnal Aberration Correction (cont'd)

\[h_A = \text{apparent hour angle of sun corrected for annual aberration} \]

\[= \text{GAST} - \alpha_A . \]

\[\phi = \text{observer's geographic latitude}. \]

2.7 Semi-Diameter Correction to the Horizontal Angle

\[HA = \text{horizontal angle to centre of sun} \]

\[= HA^{\text{obs}} + \Delta HA , \]

where

\[HA^{\text{obs}} = \text{observed horizontal angle measured clockwise from the reference object to the trailing edge of the sun} \]

\[\Delta HA = \text{semi-diameter correction to observed horizontal angle} \]

\[= 0.266994 / (R \cos\alpha_D) \text{ (deg.)} \]

\[R = \text{true (geometric) radius vector of sun (see § 2.3)} \]

\[\alpha_D = \text{apparent altitude of sun corrected for diurnal aberration} \]

\[= \arcsin(\sin\delta_D \sin\phi + \cos\delta_D \cosh D \cos\phi) \]

\[h_D = \text{apparent hour angle of sun corrected for diurnal aberration} \]

\[= \text{GAST} - \alpha_D . \]

3. Polaris Update

The expressions given in this section can be found in most textbooks on geodetic astronomy. Polaris is updated from the 1975.0 catalogued mean position given by the Fourth Fundamental Catalogue (FK4) prepared by Fricke and Kopff [1963].
3.1 **FK4 Catalogued 1975.0 Data for Polaris**

\[\alpha_c = \text{catalogued mean right ascension} \]

\[= 2.1240378 \text{ (hr.)} \]

\[\mu_\alpha = \text{catalogued centennial proper motion in right ascension} \]

\[= 0.0056894 \text{ (hr./century)} \]

\[d\mu_\alpha/dt = \text{catalogued centennial variation in proper motion in right ascension} \]

\[= 0.0028261 \text{ (hr./century}^2) \]

\[\delta_c = \text{catalogued mean declination} \]

\[= 89.1499556 \text{ (deg.)} \]

\[\mu_\delta = \text{catalogued centennial proper motion in declination} \]

\[= -0.0002167 \text{ (deg./century)} \]

\[d\mu_\delta/dt = \text{catalogued centennial variation in proper motion in declination} \]

\[= -0.0004389 \text{ (deg./century}^2) \].

3.2 **Time Interval**

\[t = \text{interval of tropical centuries elapsed since 1975.0} \]

\[= (JD - 2442413.478) / 36524.2199 \text{ (tropical centuries)} \]

3.3 **Removal of the E-terms of Aberration from the Catalogued Coordinates**

\[\alpha_o = \text{right ascension of polaris for 1975.0 uncorrected for annual elliptical aberration} \]

\[= \alpha_c - \Delta(\alpha)_E = 31.858202 \text{ (deg.)} = 2.1238868 \text{ (hr.)} \]
Removal of the E-terms of Aberration from catalogued coordinates (cont'd)

\[\delta_0 = \text{declination of polaris for 1975.0 uncorrected for annual elliptical aberration} \]

\[= \delta_c - \Delta(\delta_0)_E, \quad = 89.149867 \text{ (deg)} \]

where

\[\Delta(\alpha_0)_E = \text{annual elliptical aberration correction to right ascension for 1975.0} \]

\[= -0.343 \sec \delta_c (\cos \omega_0 \cos \varepsilon \cos \alpha_c + \sin \omega_0 \sin \alpha_c) \text{ (arcsec)} \]

\[\Delta(\delta_0)_E = \text{annual elliptical aberration correction to declination for 1975-0} \]

\[= -0.343 \cos \omega_0 \cos \varepsilon (\tan \varepsilon \cos \delta_c - \sin \delta_c \sin \alpha_c) + \cos \delta_c \sin \delta_c \sin \omega_0 \text{ (arcsec)} \]

\[\omega_0 = \text{ecliptic longitude of solar perigee for 1975.0} \]

\[= 283.512750 \text{ (deg)} \cdot \]

3.4 Proper Motion Correction

\[\alpha_{PM} = \text{right ascension of polaris corrected for proper motion} \]

\[= \alpha_0 + \mu_\alpha t + 0.5 (d\mu_\alpha/dt) t^2 \]

\[\delta_{PM} = \text{declination of polaris corrected for proper motion} \]

\[= \delta_0 + \mu_\delta t + 0.5 (d\mu_\delta/dt) t^2 \]
3.5 Precession Correction

\[\alpha_p = \text{Right ascension of polaris corrected for precession} \]

\[= \arctan \left(\frac{\cos \delta_p \sin (\alpha_p + \zeta)}{\cos \theta \cos \delta_p \cos (\alpha_p + \zeta) - \sin \theta \sin \delta_p} \right) + z \]

\[\delta_p = \text{Declination of polaris corrected for precession} \]

\[= \arcsin \left(\frac{\sin \theta \cos \delta_p \cos (\alpha_p + \zeta) + \cos \theta \sin \delta_p}{\cos \theta \cos \delta_p \cos (\alpha_p + \zeta) - \sin \theta \sin \delta_p} \right) \]

where

\[\zeta = 2305.297 \ t + 0.302 \ t^2 \ \text{(arcsec.)} \]

\[z = \zeta + 0.791 \ t^2 \ \text{(arcsec)} \]

\[\theta = 2004.042 \ t - 0.426 \ t^2 \ \text{(arcsec.)} \]

3.6 Nutation Correction

\[\alpha_n = \text{Right ascension of polaris corrected for nutation} \]

\[= \arctan \left(\frac{N(2,1) \ cos \delta_p \ cos \alpha_p + N(2,2) \ cos \delta_p \ sin \alpha_p + N(2,3) \ sin \delta_p}{N(1,1) \ cos \delta_p \ cos \alpha_p + N(1,2) \ cos \delta_p \ sin \alpha_p + N(1,3) \ sin \delta_p} \right) \]

\[\delta_n = \text{Declination of polaris corrected for nutation} \]

\[= \arcsin \left(\frac{N(3,1) \ cos \delta_p \ cos \alpha_p + N(3,2) \ cos \delta_p \ sin \alpha_p + N(3,3) \ sin \delta_p}{N(1,1) \ cos \delta_p \ cos \alpha_p + N(1,2) \ cos \delta_p \ sin \alpha_p + N(1,3) \ sin \delta_p} \right) \]

where

\[N(1,1) = \cos (\Delta \lambda_N) \]

\[N(1,2) = - \sin (\Delta \lambda_N) \ cos \varepsilon \]

\[N(1,3) = - \sin (\Delta \lambda_N) \ sin \varepsilon \]

\[N(2,1) = \cos (\varepsilon + \Delta \varepsilon_N) \ sin (\Delta \lambda_N) \]

\[N(2,2) = \cos (\varepsilon + \Delta \varepsilon_N) \ cos (\Delta \lambda_N) \ cos \varepsilon + \sin (\varepsilon + \Delta \varepsilon_N) \ sin \varepsilon \]

\[N(2,3) = \cos (\varepsilon + \Delta \varepsilon_N) \ cos (\Delta \lambda_N) \ sin \varepsilon - \sin (\varepsilon + \Delta \varepsilon_N) \ cos \varepsilon \]
3.6 Nutation Correction (cont'd)

\[N(3,1) = \sin(\varepsilon + \Delta \varepsilon_N) \sin(\Delta \lambda_N) \]

\[N(3,2) = \sin(\varepsilon + \Delta \varepsilon_N) \cos(\Delta \lambda_N) \cos \varepsilon - \cos(\varepsilon + \Delta \varepsilon_N) \sin \varepsilon \]

\[N(3,3) = \sin(\varepsilon + \Delta \varepsilon_N) \cos(\Delta \lambda_N) \sin \varepsilon + \cos(\varepsilon + \Delta \varepsilon_N) \cos \varepsilon \]

3.7 Annual Circular Aberration Correction

\[\alpha_A = \text{apparent right ascension corrected for annual circular aberration} \]

\[= \alpha_N + \Delta \alpha_A \]

\[\delta_A = \text{apparent declination corrected for annual circular aberration} \]

\[= \delta_N + \Delta \delta_A \]

where

\[\Delta \alpha_A = \text{annual circular aberration correction to right ascension} \]

\[= -20.496 \sec \delta_N (\cos \lambda_s \cos \varepsilon \cos \alpha_N + \sin \lambda_s \sin \alpha_N) \text{ (arcsec.)} \]

\[\Delta \delta_A = \text{annual circular aberration correction to declination} \]

\[= -20.496 \left[\cos \lambda_s \cos \varepsilon (\tan \delta_N - \sin \delta_N \sin \alpha_N) + \cos \alpha_N \sin \delta_N \sin \lambda_s \right] \text{ (arcsec.)} \]

\[\lambda_s = \text{ecliptic longitude of sun} \]

\[= L + C \text{ (See § 2.1).} \]

\[\varepsilon = \varepsilon + \Delta \varepsilon \]

3.8 Annual Elliptical Aberration Correction

\[\alpha_E = \text{apparent right ascension corrected for annual elliptical aberration} \]

\[= \alpha_A + \Delta \alpha_E \]

\[\delta_E = \text{apparent declination corrected for annual elliptical aberration} \]

\[= \delta_A + \Delta \delta_E \]
3.8 Annual Elliptical Aberration Correction (cont'd)

where

$$\Delta \alpha_E = \text{annual elliptical aberration correction to right ascension}$$

$$= -20.496 \sec^6 A (\cos \omega'_A \cos \epsilon \cos \alpha_A + \sin \omega'_A \sin \alpha_A) \text{ (arcsec.)}$$

$$\Delta \delta_E = \text{annual elliptical aberration correction to declination}$$

$$= -0.347 \left[(\cos \omega'_A \cos \epsilon (\tan \epsilon \cos \delta_A - \sin \delta_A \sin \alpha_A) + \cos \epsilon \sin \delta_A \sin \omega'_A) \right] \text{ (arcsec.)}$$

$$\omega'_A = \text{ecliptic longitude of solar perigee for } \alpha_A \text{ and } \delta_A \text{ (see § 1.3).}$$

3.9 Diurnal Aberration Correction and Final Apparent Coordinates

$$\alpha = \text{final apparent right ascension corrected for diurnal aberration}$$

$$= \alpha_E + \Delta \alpha_D$$

$$\delta = \text{final apparent declination corrected for diurnal aberration}$$

$$= \delta_E + \Delta \delta_D \ ,$$

where

$$\Delta \alpha_D = \text{diurnal aberration correction to right ascension}$$

$$= 0.32 \cos \phi \cosh E \sec \delta_E$$

$$\Delta \delta_D = \text{diurnal aberration correction to declination}$$

$$= 0.32 \cos \phi \sinh E \sin \delta_E$$

$$h_E = \text{apparent hour angle corrected for annual aberration}$$

$$= \text{GAST} - \alpha_E \ ,$$

4. Azimuth Determination

4.1 Hour Angle Solution

The azimuth of the sun or polaris, and thus of the reference object, may be derived from the hour angle system by transforming the
updated (apparent) astronomic coordinates of the sun or polaris into the horizon system, i.e.,

\[\text{Az} = \text{azimuth of sun or polaris} \]
\[= \arctan \left(\frac{-\cos\delta \sin h}{\sin\delta \cos\phi - \cos\delta \cosh \sin\phi} \right) = \arctan \left(\frac{n}{d} \right), \]

\(a = \) apparent altitude
\[= \arcsin(\sin\delta + \sin\phi + \cos\delta \cosh \cos\phi), \]

where

\(h = \) apparent local hour angle
\[= \text{GAST} - \alpha - \lambda_w \]

\(\phi = \) observer's astronomic latitude
\(\lambda_w = \) observer's astronomic west longitude.

For low order work, the observer's approximate geodetic position is substituted for the astronomic position.

The sign of the azimuth is determined by the signs of the numerator(n) and denominator(d) of the arctan argument. The "rule" for the correct sign is;

(i) if \(n < 0 \),
\[\text{Az} = \arctan \left(\frac{n}{d} \right) + 180 \text{ (deg)} \]

(ii) if \(n \geq 0 \) and \(d < 0 \),
\[\text{Az} = \arctan \left(\frac{n}{d} \right) + 360 \text{ (deg)} \]

(iii) otherwise,
\[\text{Az} = \arctan \left(\frac{n}{d} \right) . \]
This problem is avoided if either a rectangular-to-polar conversion or a
FORTRAN ATAN2 function is available.

4.2 Zenith Distance Solution

If the altitude or zenith distance of the sun or polaris is observed
instead of precise time, the following equations can be used to compute
the astronomic azimuth. An approximate time (UT) must be used to derive
the apparent astronomic coordinates of the sun or polaris.

\[Az = \text{apparent azimuth of sun or polaris} \]
\[= \arccos\left(\frac{\sin \delta - \sin \phi \sin a}{\cos \phi \cos a}\right) \]

where
\[\phi \] = observer's astronomic latitude
\[a \] = observed altitude of sun or polaris (corrected for geocentric
parallax for observations on the sun, i.e., \(a = a^{\text{obs}} + \Delta a_{\text{Par}} \))
\[\Delta a_{\text{Par}} \] = geocentric parallax of solar altitude
\[= \arccos\left(\frac{\sin \Pi \cos a^{\text{obs}}}{\Pi \cos a^{\text{obs}}}
ight) \]
\[\Pi \] = constant of parallax
\[= 8.794 \text{ (arcsec.)} \]

4.3 Azimuth of the Reference Object

\[AZ_{RO} = \text{apparent azimuth of the sun} \]
\[= Az_{sun} - HA \]

where,

\[Az_{sun} = \text{apparent azimuth of the sun} \]
HA = observed horizontal angle measured clockwise from the reference object to the sun. If the trailing edge of the sun is observed the semi-diameter correction must be applied to HA (see §2.6).

5. Concluding Remarks

The expressions provided in this paper will result in an accuracy of better than 1 second of time in right ascension and 1 second of arc in declination for both the sun and polaris. Greater accuracies are possible if more terms in the expressions for $\Delta \lambda_p$ and $\Delta \lambda_N$ are included. The extra terms may be obtained from Craymer [1984] or Newcomb [1898].

The same expressions for polaris may also be applied to other stars where their catalogued FK4 data are used in place of those for polaris (see § 3.1).

6. References

6. References

